A NIBE GROUP MEMBER **RESIDENTIAL**TRANQUILITY® 30 PREMIER SPLIT SYSTEMS # PRODUCT CATALOG Part#: RP3007 | Revised: May 2, 2025 Models: SJ/SP/SA/SK 024-060 60Hz - R-454B ### **Table of Contents** - 3 Introduction - 5 Features, Options, and Accessories - iGate 2 Communicating Controls Powered by DXM2.5 Advanced Communicating Controls - 7 iGate 2 Communicating (AWC) Thermostat - 8 myUplink: Web and Mobile Interface - 9 vFlow Internal Variable Water Flow Control - 11 iGate 2 Smart Tank - 12 Selection Procedure - 14 Tranquility SJ Model Nomenclature - 15 Tranquility SP Model Nomenclature - 16 Tranquility SA and SK Model Nomenclature - 17 Performance Data: AHRI/ASHRAE/ISO 13256-1 - 19 Performance Data - 27 Blower Performance: CV EC Standard Unit - 28 Electrical Data - **30** Part Load Performance: Correction Tables - 31 Full Load Performance: Correction Tables - 32 High Head and Standard Variable Pump Performance - 33 Antifreeze Correction Table - 34 Physical Data - 36 Tranquility SJ Dimensional Data - 37 Tranquility SP Dimensional Data - 38 Tranquility SK Dimensional Data - 39 Tranquility SA Dimensional Data - 40 Minimum Installation Area - 42 Accessories and Options - 43 Warranty - 44 Revision History #### Introduction #### THE TRANQUILITY® 30 PREMIER SPLIT SYSTEMS The Tranquility Premier Split Systems showcase superb efficiency ratings, quiet operation, and application flexibility that are synonymous with the ClimateMaster Tranquility family. This category of the Tranquility family includes: - Tranquility 30 (SJ) Premier Indoor Split Series - Tranquility 30 (SP) Premier Outdoor Split Series - Tranquility (SA) Premier Air Handler - Tranquility (SK) Premier Cased Coil Tranquility Premier Split Systems surpass ASHRAE 90.1 efficiency standards and utilize R-454B low Global Warming Potential (GWP) refrigerant, setting a high standard for eco-friendly performance. Available is sizes 2 tons (7.0 kW) through 5 tons (17.6 kW), Tranquility Premier Split Systems offer application flexibility and a wide range of units for most any installation. The Tranquility Premier Split Systems offer an extended-range circuit capable of ground-loop (geothermal) applications as well as open-loop applications. These innovative units incorporate ultra-efficient two-stage unloading scroll compressors, EC variable fan motor (SA), communicating controls, galvanized-steel cabinet construction, thermoset polymer drain pan (SA, SK), and acoustic type fiber insulation. When paired with the Tranquility (SA) Premier Air Handler, the SJ and SP deliver a fully electric-heating and cooling solution. For dual-fuel heating and cooling solutions, the Tranquility SJ and SP can also be paired with the Tranquility (SK) Premier Cased Coil. The Tranquility 30 Premier Split Systems are ideal for both new and retrofit applications, offering a perfect fit for remote installations such as second floors, crawl spaces, and attics. Tranquility 30 Premier Split Systems exemplify innovation and efficiency, making them a versatile choice for various residential and light commercial applications. Recent EPA mandates require an industry transition to low-GWP refrigerants, such as R-454B which is a gas that is classified as having low-toxicity, low flammability rating. Due to these characteristics, R-454B systems charged with over 62 ounces of refrigerant must contain an integrated Refrigerant Detection System (RDS). In the unlikely event of a system-refrigerant leak, the RDS shuts down compressor operation and runs the unit blower motor to disperse any concentration of leaked refrigerant in compliance with UL 60335-2-40 safety standards. For Tranquility SJ, SK, and SA, all sizes are required to have a factory-installed RDS. ClimateMaster's double-isolation compressor mounting system makes the Tranquility Premier Split Systems some of the quietest units on the market. Compressors are mounted using specially engineered sound-tested EPDM grommets to a heavy-gauge mounting plate, which is then isolated from the cabinet base with EPDM grommets to minimize vibration transmission and maximize sound attenuation. Multiple removable access panels and an easily accessible control box make installation and maintenance user friendly. Options such as coated air coil, internal variable speed pump, modulating water valve, and high-efficiency MERV-rated air filters allow for customizable design solutions. iGate® 2 technology provides technicians an interface into the operation of the system in real time without the need for hard tooling. On-board advanced controls communicate the key operating system temperatures allowing technicians to startup, commission, and service equipment remotely by smart phone or website interface. Communication can also be established at the unit via a communicating thermostat or handheld service tool. Not only does iGate 2 monitor current performance, it also allows the functionality to make system adjustments and captures operating conditions at time of fault. The data is presented in a user-friendly format, enhancing the overall usability of the experience. ### Introduction vFlow® is ClimateMaster's variable water flow technology. It represents a major advancement in water flow system management efficiency. vFlow not only builds major water circulation components into the unit for a clean installation, it also intelligently varies water flow to minimize pump energy consumption and improve system reliability. The heart of vFlow is either a variable-speed pump or modulating water valve intelligently controlled with DXM2.5 Advanced Communicating Controls. Water flow is automatically varied based on changes in unit capacity level (stage) and sourcewater temperature to maintain optimum system performance. vFlow allows the use of direct-return piping, while eliminating external two-way valves and automatic flow regulators - making vFlow systems inherently self-balancing. vFlow systems provide reduced water pumping power compared to traditional fixed-speed pumping systems. They also protect the unit against extreme operating conditions, thus extending the life of the compressor and air coil. Since vFlow is built inside the unit, it also saves on installation time and makes for a very clean and compact installation. The Tranquility Premier Split Systems are designed to meet the challenges of today's HVAC demands with one of the most innovative products available on the market. ### Features, Options, and Accessories #### **FEATURES** - Sizes 024 (2 ton, 7 kW) through 060 (5 tons, 17.6 kW) - Exceeds ASHRAE 90.1 efficiency standards - Environmentally friendly R-454B low-GWP refrigerant - Refrigerant Detection System (RDS) factory installed on all sizes (SJ, SA, SK) - Intelligent variable speed Constant Volume (CV) EC blower motors for precise airflow control (SA) - Part-load operation significantly lowers annual operating costs - Galvanized-steel cabinet construction - The Tranquility SJ features a matte black polyester powder-coat finish with stainless steel access panels - The Tranquility SP features a bonded silver polyester powder coat finish - The Tranquility SA features a matte black polyester powder coat finish - Sound-absorbing glass-fiber insulation - Unique double-isolation compressor mounting with vibration isolation for quieter operation (SJ, SP) - Separate compressor and air-handler sections for application flexibility - TXV metering device - Field-convertible supply and return configuration (SA, SJ) - Unit Performance Sentinel performancemonitoring system - Eight standard safety features - Easy-to-clean thermoset drain pan (SA, SK) - DXM2.5 Advanced Communicating Controls: - Multiple communication pathways for unite access and diagnosis: - Cloud-based remote monitoring via Wi-Fi communicating color touchscreen thermostat - Connect directly the system with a handheld service tool - Provides real-time unit operating conditions - Reduces startup, commissioning, and service time by providing key system temperatures electronically - Captures operating conditions in the event of a safety shutdown - Anti-short cycle and over/under voltage protection - Easy-access swing-out control box - High-pressure, loss-of-charge, and condensate overflow protection - LED fault and status indication at controller - Corrosive resistant aluminum air coil (SA, SK) - Convenient service-tool access port for controller configuration and diagnostics located on the front corner post. #### **OPTIONS** - Corrosion-resistant cupro-nickel water-heat exchanger (SJ) - Domestic Hot Water Generator (HWG) (SJ) - vFlow unit-integrated variable-speed water pump (SJ) - vFlow unit-integrated modulating water valve for maximum water-flow control (SJ, SP) - Factory-installed compressor soft starter to reduce inrush currents for more efficient startups (SJ, SP) - Integrated power disconnect (SJ) #### **ACCESSORIES** - iGate 2 Communicating (AWC) Thermostat with color touchscreen (included with purchase of SA) - iGate 2 Smart Tank - Wide variety of thermostat options to meet your application needs - Auxiliary electric heaters (SA) # iGATE 2 COMMUNICATION – CLOUD CONNECTED, WEB-ENABLED INFORMATION GATEWAY TO MONITOR, CONTROL, AND DIAGNOSE YOUR SYSTEM The Tranquility Premier Split Systems are equipped with industryfirst, iGate 2 communication information gateway that allows users to interact with their water-source system in easy to read clear language AND delivers improved reliability and efficiency by precisely controlling smart components. Monitor/Configure – Installers can configure from the myUplink PRO website, mobile app, AWC Thermostat, or diagnostic tool, including: airflow, unit family, size, accessory configuration, and demand reduction (optional, to limit unit operation during peak times). Users can look up the current system status: temperature sensor readings and operational status of the blower. Precise Control – The DXM2.5 enables intelligent, two-way communication between the DXM2.5
and smart components like the communicating thermostat/diagnostic tool and constant volume CV EC blower motor. DXM2.5 Advanced Communicating Controls uses information received from the smart components and temperature sensors to precisely control operation of the variable speed CV EC fan to deliver higher efficiency, reliability and increased comfort. **Diagnostics** – iGate 2 takes diagnosing water source heat pump units to a next level of simplicity, by providing a dashboard of system and fault information, in clear language, on the AWC Thermostat, handheld service tool and the web portal/mobile app on the internet. iGate 2 Service Warnings notify the homeowner and contractor of a fault and displays fault descriptions by app notifications and email with possible causes. Additionally, the current system status can be viewed graphically on the web portal and mobile app. In iGate 2 Service Mode, the service personnel can access fault description, possible causes and most importantly, the conditions (temp, flow, i/o conditions, configuration) at the time of the fault. Manual Operation mode allows the service personnel to manually command operation for any of the thermostat outputs, blower speed, to help troubleshoot specific components. This operation can either be conducted at the unit with a diagnostic tool or remotely with mobile app/website when the AWC Thermostat controls are used. With an iGate 2 communicating system, users and contractors have a web-enabled gateway to system information never before available and exclusive to ClimateMaster products. ### iGate 2 Communicating (AWC) Thermostat # iGATE 2 COMMUNICATION – CLOUD CONNECTED, WEB-ENABLED INFORMATION GATEWAY TO MONITOR, CONTROL, AND DIAGNOSE YOUR SYSTEM The iGate 2 Communicating (AWC) Thermostat is innovating the future of comfort technology, one building at a time. The inspired design of the touch screen interface allows you to see real-time data for the efficiency and health of your system, with early warnings for potential system faults. The cloud based information gateway allows technicians to remotely diagnose system issues before occupants even know there is a problem. Control and monitor the system in your home or business from anywhere in the world with an easy to use app on your phone. # Features with Efficiency in Mind #### **Touchscreen Interface** A brilliantly customizable touchscreen monitor for simple control. #### **Seamless Integration** Between your AWC Thermostat and comfort system. #### (Mobile) Remote System Control Control temperature and schedule from anywhere in the world. #### **Early Fault Warnings** Alerts the building owner and the contractor of potential system faults in the future. #### **Remote Diagnostics** Enable the contractor to remotely diagnose system issues, adjust system settings, and reset faults. # Real-Time Operations Data and System Schematics Access simply via the myUplink PRO Account and web portal to view system diagrams with current operating temperatures. #### **Revenue Stream** HVAC professionals can offer owners service contracts with remote monitoring and diagnostic capabilities without the large expense of a building management system. ### myUplink: Web and Mobile Interface ### **HVAC Professional** | User Experience iGate 2 establishes a two-way link between the AWC Thermostat and the cloud, adding significant value for both residential and commercial customers. Our new thermostat works with your customers' Tranquility comfort systems to provide the most efficient link between their system and your services. The customizable monitoring from the myUplink PRO web portal or phone app account allows for continuous system monitoring, analysis, repair recognition, and early warnings for potential system faults that are sent to you and your customer. #### **Benefits** - Remote login from anywhere, anytime from any internet connected device - View system fault history with possible root causes - Information is available for contractors to troubleshoot and diagnose systems remotely - Secure internet connection keeps homeowner information private - Access thermostat(s) through Android and iPhone mobile apps ### Homeowner | User Experience iGate 2 advanced unit controls enable a two-way communication link for critical system information between the unit and the cloud. From any internet connected device or smart phone, building owners can control and monitor their systems from anywhere in the world. iGate 2 offers building owners peace of mind their systems are operating at peak performance with advanced operational performance issue notifications. HVAC professionals get notifications when systems are operating out of range. They can log in remotely to check system faults, review current operating conditions, and diagnose issues remotely. This gives the HVAC technician the upper hand when showing up to perform service, saving time which in turn, saves money. #### **Benefits** - Communicates personal settings and reminders through the iGate 2 communication system - Easy-to-use, full-color, high-resolution user interface - Sleek, intuitive control panel - Secure internet connection keeps your information private - Contains unit model, serial number and your HVAC professionals contact information - System monitoring automatically contacts HVAC system providers when service is needed # vFlow Internal Variable Water Flow Control #### **VFLOW INTERNAL VARIABLE WATER FLOW** Industry-first, built-in vFlow replaces a traditionally inefficient, external component of the system (water circulation) with an ultra-high-efficient, variable speed, internal water flow system. This saves 70-80% on water circulation compared to traditional single speed pump systems. Multi-unit installations are also much simpler with vFlow systems, as the units automatically adjust water flow across the system. vFlow is enabled by iGate 2, which facilitates intelligent communication between the thermostat, DXM2.5 Advanced Communicating Controls, sensors, and internal water pump/valve to make true variable water flow a reality. #### **VFLOW IS AVAILABLE IN FOUR VARIATIONS:** - Low System Pressure Drop Modulating Valve The high CV motorized valve is used for a multi-unit or central pumping, closed loop application. - High System Pressure Drop Modulating Valve Motorized valve for higher pressure water systems such as a water well or other open loop applications. A cupro-nickel water coil is standard with this option. - 3. Standard Head Variable Pump Internal Flow Controller Multi-unit or central pumping for a closed loop application. The Internal Flow Controller includes a variable speed pump, flushing ports, 3-way flushing valves, and an expansion tank. #### 4. High Head Variable Pump Internal Flow Controller Multi-unit or individual unit for a closed loop application. The Internal Flow Controller includes a variable speed pump, flushing ports, 3-way flushing valves, and an expansion tank. #### **VFLOW DELIVERS THREE MAIN BENEFITS:** - Easier and quicker unit installation as the flow control is built in to the unit. - 2. Superior reliability by varying the water flow to deliver more stable operation. - 3. Increased cost savings by varying the flow (and pump watt consumption) to match the unit's mode of operation. #### **INTERNAL COMPONENTS** All Tranquility products can be installed more easily and compactly than their predecessors because vFlow components are internal to the unit. They also save installing contractors labor and time by eliminating the need for an external flow regulator or a bulky external pumping module. #### **VARIABLE FLOW** vFlow technology enables variable water flow through the unit, with the DXM2.5 adjusting the pump speed to maintain an installer-set loop ΔT . By controlling the water flow, the system is able to operate at its optimal capacity and efficiency. vFlow provides a lower flow rate for part load where units typically operate 80% of the time and a higher, more normal flow rate for full load operation. Variable speed pump or motorized modulating valve delivers variable water-flow, controlled by DXM2.5, based on loop water ΔT . ### vFlow Internal Variable Water Flow Control #### **ENERGY SAVINGS WITH WATER CIRCULATION CONTROL** Units with vFlow deliver greater operating cost savings by varying the water flow to match the unit's operation (ex: lower water flow when unit is in part load operation). Lowering the flow results in lower energy consumption by the water pump and cost savings in vFlow units (whether internal or external pump). In applications using vFlow with internal variable speed electronically commuted (EC) pump, the EC pump uses fewer watts than a fixed speed (PSC) pump even at full load. The EC pump excels in energy savings in part load, saving 70-80% watts compared to fixed speed pumps (see chart). The EC pump can operate with independent flow rates for both heating and cooling operations allowing for more energy savings. In loop applications, when the motorized modulating valve slows down the water flow during part load operation, the external pump consumes fewer watts, thus saving more energy. ### iGate 2 Smart Tank #### **iGate 2 Smart Tank Features** - 1. Brass temperature and pressure relief valve - 2. iGate 2 Smart Tank communicates with the geothermal heat pump through DXM2.5 Advanced Communicating Controls - 3. Polyethylene outer jacket is car bumper tough - Water temperature sensors continuously monitor water temperature and communicate this information to the heat pump. When water temperature falls below preference settings, the heat pump generates hot water. #### **iGate 2 Smart Tank Features** - 5. Inlet port for incoming water from the heat pump - 6. Full port ball valve for fast water drainage - 7. Seamless polybutene tank is impervious to rust - 8. 2.5-inch insulation for reduced standby heat loss. - 9. Titanium heating elements for longevity and superior corrosion
resistance - 10. Bowl-shaped bottom for more complete sediment drainage # **Selection Procedure** #### **Reference Calculations** | Heating | Cooling | | | | | | | | |----------------|-----------------------------------|--|--|--|--|--|--|--| | LWT = EWT - HE | LWT = EWT + HR LC = TC-SC | | | | | | | | | GPM x Constant | GPM x Constant | | | | | | | | | LAT = EAT + HC | LAT (DB) = EAT (DB) - SC S/T = SC | | | | | | | | | CFM x 1.08 | CFM x 1.08 | | | | | | | | Constant = 500 for water, 485 for antifreeze #### Conversion Table - to convert inch-pound (English) to S-I (Metric) | Airflow | Water Flow | External Static Pressure | Water Pressure Drop | |------------------------------------|---------------------------------|--|---------------------------------| | Airflow (L/s) = CFM \times 0.472 | Water Flow (L/s) = GPM x 0.0631 | ESP (Pa) = ESP (in of wg) \times 249 | PD (kPa) = PD (ft of hd) x 2.99 | #### **Legend and Glossary of Abbreviations** | Abbreviations | Descriptions | |---------------|--| | Btuh | Btu (British Thermal Unit) per hour | | BMS | Building Management System | | CDT | Compressor discharge temperature | | CFM | Airflow, cubic feet per minute | | COP | Coefficient of performance = Btuh output/Btuh input | | CT EC | Electronically commutated constant torque blower motor | | CV EC | Electronically commutated constant volume blower motor | | DB | Dry bulb temperature, °F | | DT | Delta T | | EAT | Entering air temperature | | EER | Energy efficient ratio = Btuh output/Watt input | | ESP | External static pressure, inches w.g. | | EWT | Entering water temperature | | FPT | Female pipe thread | | GPM | Water flow in U.S., gallons per minute | | HC | Air heating capacity, Btuh | | HE | Total heat of extraction, Btuh | | HR | Total heat of rejection, Btuh | | Abbreviations | Descriptions | | | | | | |---------------|--|--|--|--|--|--| | HWG | Hot water generator (desuperheater)
capacity, MBtuh | | | | | | | kW | Total power unit input, kilowatts | | | | | | | LAT | Leaving air temperature, °F | | | | | | | LC | Latent cooling capacity, Btuh | | | | | | | LOC | Loss of charge | | | | | | | LWT | Leaving water temperature, °F | | | | | | | MBtuh | 1,000 Btu per hour | | | | | | | MPT | Male pipe thread | | | | | | | MWV | Motorized water valve | | | | | | | PSC | Permanent split capacitor | | | | | | | RDS | Refrigerant Detection System | | | | | | | SC | Sensible cooling capacity, Btuh | | | | | | | S/T | Sensible to total cooling ratio | | | | | | | TC | Total cooling capacity, Btuh | | | | | | | TD or delta T | Temperature differential | | | | | | | VFD | Variable frequency drive | | | | | | | WB | Wet bulb temperature, °F | | | | | | | WPD | Waterside pressure drop, psi or feet of head | | | | | | | WSE | Waterside economizer | | | | | | ### **Selection Procedure** #### **USE THE FOLLOWING SELECTION STEPS** - Determine the actual heating and cooling loads at the desired dry bulb and wet bulb conditions. - 2. Obtain the following design parameters: Entering water temperature, water flow rate in GPM, airflow in CFM, water flow pressure drop and design wet and dry bulb temperatures. Airflow CFM should be between 300 and 450 CFM per ton. Unit water pressure drop should be kept as close as possible to each other to make water balancing easier. Go to the appropriate tables and find the proper indicated water flow and water temperature. - Select a unit based on total and sensible cooling conditions. Select a unit which is closest to, but no larger than, the actual cooling load. - Enter tables at the design water flow and water temperature. Read the total and sensible cooling capacities #### Note: interpolation is permissible, extrapolation is not. - 5. Read the heating capacity. If it exceeds the design criteria it is acceptable. It is quite normal for water-source heat pumps to be selected on cooling capacity only since the heating output is usually greater than the cooling capacity. - 6. Determine the correction factors associated with the variable factors of dry bulb and wet bulb. Corrected Total Cooling = tabulated total cooling x wet bulb correction. Corrected Sensible Cooling = tabulated sensible cooling x wet/dry bulb correction. - 7. Compare the corrected capacities to the load requirements. Normally if the capacities are within 10% of the loads, the equipment is acceptable. It is better to undersize than oversize, as undersizing improves humidity control, reduces sound levels and extends the life of the equipment. - 8. When completed, calculate water temperature rise and assess the selection. If the units selected are not within 10% of the load calculations, then review what effect changing the GPM, water temperature and/or air flow and air temperature would have on the corrected capacities. If the desired capacity cannot be achieved, select the next larger or smaller unit and repeat the procedure. Remember, when in doubt, undersize slightly for best performance. #### **EXAMPLE EQUIPMENT SELECTION FOR COOLING** #### **Step 1: Load Determination** Assume we have determined that the appropriate cooling load at the desired dry bulb 80°F and wet bulb 65°F conditions is as follows: | Total Cooling | 22,000 | Btuh | |-------------------|--------------------------|------| | Sensible Cooling | 18,200 | Btuh | | Entering Air Temp | 80°F Dry Bulb / 65°F Wet | Bulb | #### **Step 2: Design Conditions** Similarly, we have also obtained the following design parameters: | Entering Water Temp9 | °O°F | |--|------| | Water Flow (Based upon 10°F rise in temp) .4.5 G | PM | | Airflow600 C | FM | #### Steps 3, 4, and 5: HP Selection After making our preliminary selection (SJ024), we enter the tables at design water flow and water temperature and read Total Cooling, Sensible Cooling and Heat of Rejection capacities: | Total Cooling | 22,500 Btuh | |-------------------|-------------| | Sensible Cooling | 16,500 Btuh | | Heat of Rejection | 28 800 Btuh | #### **Steps 6 and 7: Entering Airflow Corrections** Next, we determine our correction factors. | Corrected Values | Table | _ | Ent Air | _ | Airflow | | Corrected | |-----------------------------|--------|---|---------|---|---------|---|-----------| | Corrected Total
Cooling | 22,500 | X | 0.976 | X | 0.967 | = | 21,235 | | Corrected Sensible Cooling | 16,500 | Х | 0.919 | Х | 1.089 | = | 16,513 | | Corrected Heat of Rejection | 28,800 | Х | 0.969 | Х | 0.972 | = | 27,126 | # Step 8: Water Temperature Rise Calculation and Assessment When we compare the Corrected Total Cooling and Corrected Sensible Cooling figures with our load requirements stated in Step 1, we discover that our selection is within ±10% of our sensible load requirement. Furthermore, we see that our Corrected Total Cooling figure is within 1,000 Btuh the actual indicated load. # **Tranquility SJ Model Nomenclature** #### NOTES: - Available with sizes 024-036 - All Open Loop vFlow Water Circuit Options require a Cupro-Nickel Heat Exchanger. All Closed Loop vFlow Water Circuit Options require a Standard Heat Exchanger. If no Water Circuit Option is selected, then the Heat Exchanger can be either Standard or Cupro-Nickel. # Tranquility SP Model Nomenclature CABINET — 0 = Residential #### NOTES: - Available with sizes 024-036 - 2. Available only with Standard Heat Echanger for Closed-Loop applications # Tranquility SA and SK Model Nomenclature #### **Tranquility SA Model Nomenclature** #### NOTES: - Available with size 024 - Available with sizes 036 and 048 - 3. Available with size 060 #### **Tranquility SK Model Nomenclature** #### NOTES: - Available with size 024 - 2. Available with sizes 036 and 048 - 3. Available with size 060 # Performance Data: AHRI/ASHRAE/ISO 13256-1 #### ASHRAE/AHRI/ISO 13256-1 SJ/SP with Tranquility SA (Part Load) (English IP) | Model | | Wa | ter Loop H | leat Pump | Grou | ınd Water | Heat Pump | Ground Loop Heat Pump | | | | | | |----------|---------------|------------------|---------------|------------------|------|------------------|---------------|-----------------------|-----|------------------|---------------|------------------|-----| | | Motor
Type | Cooling 86°F | | Heating 68°F | | Cooling 59°F | | Heating 50°F | | Cooling 68°F | | Heating 41°F | | | | | Capacity
Btuh | EER
Btuh/W | Capacity
Btuh | СОР | Capacity
Btuh | EER
Btuh/W | Capacity
Btuh | СОР | Capacity
Btuh | EER
Btuh/W | Capacity
Btuh | СОР | | SJ/SP024 | EC | 16,700 | 17.2 | 19,800 | 6.1 | 18,400 | 30.1 | 16,300 | 5.0 | 18,000 | 24.7 | 14,500 | 4.4 | | SJ/SP036 | EC | 27,200 | 17.7 | 28,800 | 5.5 | 30,200 | 31.2 | 24,000 | 4.7 | 28,700 | 23.1 | 21,000 | 4.3 | | SJ/SP048 | EC | 32,200 | 17.0 | 39,000 | 5.6 | 38,500 | 31.3 | 31,500 | 4.6 | 36,800 | 25.0 | 27,500 | 4.1 | | SJ/SP060 | EC | 41,300 | 17.1 | 45,900 | 5.3 | 47,400 | 28.7 | 38,200 | 4.5 | 45,200 | 23.8 | 33,900 | 4.1 | - Cooling capacities based upon 80.6°F DB, 66.2°F WB entering air temperature - Heating capacities based upon 68°F DB, 59°F WB entering air temperature - Ground Loop Heat Pump ratings based on 15% methanol antifreeze solution - All ratings based upon operation at lower voltage of dual-voltage rated models #### ASHRAE/AHRI/ISO 13256-1 SJ/SP with Tranquility SA (Full Load) (English IP) | Model | | Wa | ter Loop H | leat Pump | Grou | ınd Water | Heat Pump | Ground Loop Heat Pump | | | | | | |----------|-------|------------------|---------------|------------------|------|------------------|---------------|-----------------------|-----|------------------|---------------|------------------|-----| | | Motor | Cooling 86°F | | Heating 68°F | | Cooling 59°F | | Heating 50°F | | Cooling 68°F | | Heating 41°F | | | | Туре | Capacity
Btuh | EER
Btuh/W | Capacity
Btuh | СОР | Capacity
Btuh | EER
Btuh/W
| Capacity
Btuh | СОР | Capacity
Btuh | EER
Btuh/W | Capacity
Btuh | СОР | | SJ/SP024 | EC | 23,200 | 16.5 | 27,200 | 5.5 | 24,700 | 25.2 | 22,500 | 4.8 | 23,900 | 19.0 | 17,900 | 4.0 | | SJ/SP036 | EC | 36,400 | 17.3 | 39,400 | 5.3 | 41,800 | 25.0 | 33,700 | 4.7 | 38,300 | 18.4 | 26,900 | 4.0 | | SJ/SP048 | EC | 48,000 | 16.6 | 56,100 | 5.0 | 51,900 | 22.2 | 46,000 | 4.4 | 49,000 | 18.1 | 35,500 | 3.7 | | SJ/SP060 | EC | 59,700 | 16.0 | 63,900 | 5.0 | 65,000 | 22.9 | 55,100 | 4.3 | 60,200 | 17.6 | 45,000 | 3.7 | - Cooling capacities based upon 80.6°F DB, 66.2°F WB entering air temperature - Heating capacities based upon 68°F DB, 59°F WB entering air temperature - Ground Loop Heat Pump ratings based on 15% methanol antifreeze solution - All ratings based upon operation at lower voltage of dual-voltage rated models #### ASHRAE/AHRI/ISO 13256-1 SJ/SP with Tranquility SK (Part Load) (English IP) | Model Motor
Type | Motor | Wa | ler Loop H | leat Pump | Grou | und Water | Heat Pump | Ground Loop Heat Pump | | | | | | |---------------------|-------|------------------|---------------|------------------|------|------------------|---------------|-----------------------|-----|------------------|---------------|------------------|-----| | | | Cooling 86°F | | Heating 68°F | | Cooling 59°F | | Heating 50°F | | Cooling 68°F | | Heating 41°F | | | | lype | Capacity
Btuh | EER
Btuh/W | Capacity
Btuh | СОР | Capacity
Btuh | EER
Btuh/W | Capacity
Btuh | СОР | Capacity
Btuh | EER
Btuh/W | Capacity
Btuh | СОР | | SJ/SP024 | EC | 16,400 | 16.5 | 19,900 | 5.9 | 18,100 | 28.5 | 16,400 | 4.8 | 18,000 | 24.0 | 14,700 | 4.3 | | SJ/SP036 | EC | 26,300 | 18.4 | 29,500 | 5.5 | 29,500 | 30.4 | 24,000 | 4.6 | 28,300 | 24.6 | 21,600 | 4.2 | | SJ/SP048 | EC | 31,500 | 16.3 | 38,400 | 5.5 | 38,100 | 29.0 | 31,300 | 4.6 | 35,300 | 21.9 | 28,500 | 4.0 | | SJ/SP060 | EC | 40,800 | 15.7 | 46,700 | 5.2 | 46,500 | 25.8 | 38,900 | 4.4 | 44,400 | 22.0 | 34,500 | 4.0 | - Cooling capacities based upon 80.6°F DB, 66.2°F WB entering air temperature - Heating capacities based upon 68°F DB, 59°F WB entering air temperature - Ground Loop Heat Pump ratings based on 15% methanol antifreeze solution All ratings based upon operation at lower voltage of dual-voltage rated models ASHRAE/AHRI/ISO 13256-1 SJ/SP with Tranquility SK (Full Load) (English IP) | | | Wa | ter Loop H | leat Pump | | Grou | ınd Water | Heat Pump | | Grou | nd Loop | Heat Pump |) | |----------|-------|------------------|---------------|------------------|------|------------------|---------------|------------------|------|------------------|---------------|------------------|------| | Model | Motor | Cooling | 86°F | Heating | 68°F | Coolin | g 59°F | Heating ! | 50°F | Cooling | 3 68°F | Heating | 41°F | | | Туре | Capacity
Btuh | EER
Btuh/W | Capacity
Btuh | СОР | Capacity
Btuh | EER
Btuh/W | Capacity
Btuh | СОР | Capacity
Btuh | EER
Btuh/W | Capacity
Btuh | СОР | | SJ/SP024 | EC | 23,000 | 15.6 | 27,500 | 5.2 | 24,700 | 23.6 | 22,800 | 4.6 | 23,700 | 17.8 | 18,300 | 3.8 | | SJ/SP036 | EC | 36,900 | 15.8 | 41,100 | 5.1 | 41,000 | 23.6 | 33,200 | 4.4 | 36,800 | 18.2 | 27,300 | 3.9 | | SJ/SP048 | EC | 47,000 | 15.1 | 56,500 | 5.0 | 51,100 | 21.0 | 46,800 | 4.2 | 48,500 | 16.7 | 36,500 | 3.6 | | SJ/SP060 | EC | 57,300 | 14.3 | 65,000 | 5.0 | 63,900 | 20.3 | 56,200 | 4.2 | 59,600 | 16.1 | 46,500 | 3.6 | - Cooling capacities based upon 80.6°F DB, 66.2°F WB entering air temperature - Heating capacities based upon 68°F DB, 59°F WB entering air temperature Ground Loop Heat Pump ratings based on 15% methanol antifreeze solution All ratings based upon operation at lower voltage of dual-voltage rated models # Performance Data: AHRI/ASHRAE/ISO 13256-1 #### ASHRAE/AHRI/ISO 13256-1 SJ/SP with Tranquility SA (Part Load) (Metric SI) | | | Wat | er Loop I | leat Pump | | Gro | und Water | Heat Pump | | Grou | nd Loop | Heat Pump | | |----------|-------|----------------|------------|----------------|------|----------------|-----------|----------------|------|----------------|------------|----------------|--------| | Model | Motor | Cooling | 30°C | Heating 2 | 20°C | Coolin | g 15°C | Heating 1 | l0°С | Full Coolir | ng 20°C | Full Heatin | ıg 5°C | | | Туре | Capacity
kW | EER
W/W | Capacity
kW | СОР | Capacity
kW | EER W/W | Capacity
kW | СОР | Capacity
kW | EER
W/W | Capacity
kW | СОР | | SJ/SP024 | EC | 5 | 5.0 | 6 | 6.1 | 5 | 8.8 | 5 | 5.0 | 5 | 7.2 | 4 | 4.4 | | SJ/SP036 | EC | 8 | 5.2 | 8 | 5.5 | 9 | 9.1 | 7 | 4.7 | 8 | 6.8 | 6 | 4.3 | | SJ/SP048 | EC | 9 | 5.0 | 11 | 5.6 | 11 | 9.2 | 9 | 4.6 | 11 | 7.3 | 8 | 4.1 | | SJ/SP060 | EC | 12 | 5.0 | 13 | 5.3 | 14 | 8.4 | 11 | 4.5 | 13 | 7.0 | 10 | 4.1 | - Cooling capacities based upon 80.6°F DB, 66.2°F WB entering air temperature - Heating capacities based upon 68°F DB, 59°F WB entering air temperature - Ground Loop Heat Pump ratings based on 15% methanol antifreeze solution - All ratings based upon operation at lower voltage of dual-voltage rated models #### ASHRAE/AHRI/ISO 13256-1 SJ/SP with Tranquility SA (Full Load) (Metric SI) | | | Wat | er Loop I | leat Pump | | Gro | und Water | Heat Pump | | Grou | nd Loop | Heat Pump | • | |----------|-------|----------------|------------|----------------|------|----------------|-----------|----------------|-----|----------------|------------|----------------|--------| | Model | Motor | Cooling | 30°C | Heating 2 | 20°C | Cooling | g 15°C | Heating 1 | 0°C | Full Coolir | ng 20°C | Full Heatin | ıg 5°C | | | Туре | Capacity
kW | EER
W/W | Capacity
kW | СОР | Capacity
kW | EER W/W | Capacity
kW | СОР | Capacity
kW | EER
W/W | Capacity
kW | СОР | | SJ/SP024 | EC | 7 | 4.8 | 8 | 5.5 | 7 | 7.4 | 7 | 4.8 | 7 | 5.6 | 5 | 4.0 | | SJ/SP036 | EC | 11 | 5.1 | 12 | 5.3 | 12 | 7.3 | 10 | 4.7 | 11 | 5.4 | 8 | 4.0 | | SJ/SP048 | EC | 14 | 4.9 | 16 | 4.9 | 15 | 6.5 | 13 | 4.4 | 14 | 5.3 | 10 | 3.7 | | SJ/SP060 | EC | 17 | 4.7 | 19 | 4.9 | 19 | 6.7 | 16 | 4.3 | 18 | 5.2 | 13 | 3.7 | - Cooling capacities based upon 80.6°F DB, 66.2°F WB entering air temperature - Heating capacities based upon 68°F DB, 59°F WB entering air temperature - Ground Loop Heat Pump ratings based on 15% methanol antifreeze solution - All ratings based upon operation at lower voltage of dual-voltage rated models #### ASHRAE/AHRI/ISO 13256-1 SJ/SP with Tranquility SK (Part Load) (Metric SI) | | | Wat | er Loop I | leat Pump | | Gro | und Water | Heat Pump | | Grou | nd Loop | Heat Pump | | |----------|-------|----------------|------------|----------------|------|----------------|-----------|----------------|-----|----------------|------------|----------------|--------| | Model | Motor | Cooling | 30°C | Heating 2 | 20°C | Coolin | g 15°C | Heating 1 | 0°C | Full Coolir | ng 20°C | Full Heatin | ng 5°C | | | Туре | Capacity
kW | EER
W/W | Capacity
kW | СОР | Capacity
kW | EER W/W | Capacity
kW | СОР | Capacity
kW | EER
W/W | Capacity
kW | СОР | | SJ/SP024 | EC | 5 | 4.8 | 6 | 5.9 | 5 | 8.4 | 5 | 4.8 | 5 | 7.0 | 4 | 4.3 | | SJ/SP036 | EC | 8 | 5.4 | 9 | 5.5 | 9 | 8.9 | 7 | 4.6 | 8 | 7.2 | 6 | 4.2 | | SJ/SP048 | EC | 9 | 4.8 | 11 | 5.5 | 11 | 8.5 | 9 | 4.6 | 10 | 6.4 | 8 | 4.0 | | SJ/SP060 | EC | 12 | 4.6 | 14 | 5.2 | 14 | 7.6 | 11 | 4.4 | 13 | 6.5 | 10 | 4.0 | - Cooling capacities based upon 80.6°F DB, 66.2°F WB entering air temperature Heating capacities based upon 68°F DB, 59°F WB entering air temperature - Ground Loop Heat Pump ratings based on 15% methanol antifreeze solution - All ratings based upon operation at lower voltage of dual-voltage rated models #### ASHRAE/AHRI/ISO 13256-1 SJ/SP with Tranquility SK (Full Load) (Metric SI) | | | Wat | ter Loop H | leat Pump | | Gro | und Water | Heat Pump | | Grou | nd Loop | Heat Pump | | |----------|-------|----------------|------------|----------------|------|----------------|-----------|----------------|------|----------------|------------|----------------|-------| | Model | Motor | Cooling | 30°C | Heating : | 20°C | Coolin | g 15°C | Heating 1 | l0°С | Full Coolir | ng 20°C | Full Heatin | g 5°C | | | Туре | Capacity
kW | EER
W/W | Capacity
kW | СОР | Capacity
kW | EER W/W | Capacity
kW | СОР | Capacity
kW | EER
W/W | Capacity
kW | СОР | | SJ/SP024 | EC | 7 | 4.6 | 8 | 5.2 | 7 | 6.9 | 7 | 4.6 | 7 | 5.2 | 5 | 3.8 | | SJ/SP036 | EC | 11 | 4.6 | 12 | 5.1 | 12 | 6.9 | 10 | 4.4 | 11 | 5.3 | 8 | 3.9 | | SJ/SP048 | EC | 14 | 4.4 | 17 | 4.7 | 15 | 6.2 | 14 | 4.2 | 14 | 4.9 | 11 | 3.6 | | SJ/SP060 | EC | 17 | 4.2 | 19 | 4.7 | 19 | 6.0 | 16 | 4.2 | 17 | 4.7 | 14 | 3.6 | - Cooling capacities based upon 80.6°F DB, 66.2°F WB entering air temperature - Heating capacities based upon 68°F DB, 59°F WB entering air temperature - Ground Loop Heat Pump ratings based on 15% methanol antifreeze solution - All ratings based upon operation at lower voltage of dual-voltage rated models #### **600 CFM Rated Airflow** | EWT | | WPD | | | Co | oling - E | AT 80/6 | 57°F | | HWG | | WPD | | | HE | ATING - | - EAT 70 |)°F | | |-----|-------------|-----|-----|-------|--------|-------------|---------|------|-------|-----|------|-----|-----|------|-------------|---------|----------|------|------------| | °F | FLOW
GPM | PSI | FT | TC | sc | Power
kW | HR | EER | LWT | Сар | FLOW | PSI | FT | нс | Power
kW | HE | СОР | LWT | HWG
Cap | | | | | | | NI I | D | | | | | | | | | | | | | | | 20 | | | , | peran | on Not | Recomi | menae | a | | | 4.50 | 0.9 | 2.1 | 10.8 | 1.12 | 6.9 | 2.8 | 16.8 | 1.1 | | | | | | | | | | | | | 2.25 | 0.3 | 0.6 | 11.8 | 1.11 | 8.0 | 3.1 | 22.6 | 1.2 | | 30 | 1.30 | 0.1 | 0.2 | 17.0 | 10.7 | 0.71 | 19.4 | 23.8 | 60.0 | 0.8 | 3.37 | 0.6 | 1.3 | 12.3 | 1.11 | 8.5 | 3.3 | 24.7 | 1.3 | | | | | | | | | | | | | 4.50 | 0.8 | 1.9 | 12.8 | 1.11 | 9.0 | 3.4 | 25.8 | 1.3 | | | | | | | | | | | | | 2.25 | 0.2 | 0.5 | 14.9 | 1.09 | 11.2 | 4.0 | 34.6 |
1.4 | | 40 | 2.05 | 0.3 | 0.6 | 18.3 | 11.9 | 0.65 | 20.5 | 28.3 | 60.0 | 0.8 | 3.37 | 0.5 | 1.2 | 15.4 | 1.09 | 11.7 | 4.2 | 37.8 | 1.5 | | | | | | | | | | | | | 4.50 | 0.8 | 1.8 | 15.9 | 1.09 | 12.2 | 4.3 | 39.3 | 1.5 | | | 2.25 | 0.3 | 0.6 | 18.4 | 12.4 | 0.72 | 20.8 | 25.5 | 69.3 | 1.0 | 2.25 | 0.2 | 0.5 | 15.9 | 1.08 | 12.2 | 4.3 | 38.7 | 1.6 | | 50 | 3.37 | 0.5 | 1.2 | 18.5 | 12.3 | 0.68 | 20.8 | 27.4 | 62.8 | 0.8 | 3.37 | 0.5 | 1.1 | 16.4 | 1.08 | 12.7 | 4.4 | 42.1 | 1.7 | | | 4.50 | 0.8 | 1.8 | 18.5 | 12.1 | 0.63 | 20.7 | 29.4 | 59.6 | 0.8 | 4.50 | 0.8 | 1.8 | 17.0 | 1.08 | 13.3 | 4.6 | 43.9 | 1.7 | | | 2.25 | 0.2 | 0.6 | 18.3 | 12.8 | 0.82 | 21.1 | 22.5 | 79.6 | 1.4 | 2.25 | 0.2 | 0.4 | 17.9 | 1.08 | 14.2 | 4.8 | 46.8 | 1.8 | | 60 | 3.37 | 0.5 | 1.2 | 18.4 | 12.7 | 0.77 | 21.0 | 23.9 | 73.0 | 1.1 | 3.37 | 0.5 | 1.1 | 18.4 | 1.08 | 14.7 | 5.0 | 50.9 | 1.8 | | | 4.50 | 0.8 | 1.8 | 18.5 | 12.6 | 0.73 | 21.0 | 25.5 | 69.7 | 1.0 | 4.50 | 0.7 | 1.7 | 18.9 | 1.08 | 15.3 | 5.1 | 52.9 | 1.9 | | | 2.25 | 0.2 | 0.5 | 18.0 | 13.0 | 0.93 | 21.1 | 19.3 | 89.6 | 1.9 | 2.25 | 0.1 | 0.3 | 19.8 | 1.09 | 16.0 | 5.3 | 55.1 | 1.9 | | 70 | 3.37 | 0.5 | 1.1 | 18.0 | 12.9 | 0.89 | 21.1 | 20.3 | 83.0 | 1.5 | 3.37 | 0.4 | 1.0 | 20.3 | 1.09 | 16.5 | 5.4 | 59.8 | 2.0 | | | 4.50 | 0.7 | 1.7 | 18.1 | 12.8 | 0.84 | 21.0 | 21.5 | 79.7 | 1.3 | 4.50 | 0.7 | 1.6 | 20.8 | 1.09 | 17.1 | 5.6 | 62.1 | 2.1 | | | 2.25 | 0.2 | 0.4 | 17.4 | 12.9 | 1.07 | 21.0 | 16.3 | 99.6 | 2.6 | 2.25 | 0.1 | 0.1 | 21.4 | 1.12 | 17.6 | 5.6 | 63.6 | 2.1 | | 80 | 3.37 | 0.4 | 1.0 | 17.4 | 12.8 | 1.02 | 20.9 | 17.1 | 93.0 | 2.1 | 3.37 | 0.3 | 0.8 | 21.9 | 1.12 | 18.1 | 5.8 | 68.7 | 2.1 | | | 4.50 | 0.7 | 1.6 | 17.5 | 12.7 | 0.98 | 20.8 | 17.9 | 89.7 | 1.9 | 4.50 | 0.6 | 1.4 | 22.5 | 1.12 | 18.7 | 5.9 | 71.3 | 2.1 | | | 2.25 | 0.2 | 0.4 | 16.6 | 12.7 | 1.22 | 20.7 | 13.6 | 109.4 | 3.4 | | | | | | | | | | | 90 | 3.37 | 0.4 | 0.9 | 16.6 | 12.5 | 1.18 | 20.7 | 14.2 | 102.9 | 2.8 | 1.86 | 0.1 | 0.2 | 22.6 | 1.16 | 18.6 | 5.7 | 70.0 | 2.1 | | | 4.50 | 0.7 | 1.5 | 16.7 | 12.4 | 1.13 | 20.6 | 14.8 | 99.6 | 2.6 | | | | | | | | | | | | 2.25 | 0.1 | 0.3 | 15.7 | 12.3 | 1.39 | 20.5 | 11.3 | 119.3 | 4.3 | | | | | | | | | | | 100 | 3.37 | 0.4 | 0.9 | 15.8 | 12.2 | 1.35 | 20.4 | 11.7 | 112.8 | 3.7 | 1.24 | 0.1 | 0.2 | 22.6 | 1.16 | 18.6 | 5.7 | 70.0 | 2.1 | | | 4.50 | 0.6 | 1.5 | 15.9 | 12.0 | 1.30 | 20.3 | 12.2 | 109.6 | 3.4 | | | | | | | | | | | | 2.25 | 0.1 | 0.3 | 14.9 | 11.8 | 1.58 | 20.3 | 9.4 | 129.3 | 5.4 | | | | | | | | | | | 110 | 3.37 | 0.4 | 0.8 | 15.0 | 11.7 | 1.54 | 20.2 | 9.7 | 122.8 | 4.7 | 0.93 | 0.1 | 0.2 | 22.6 | 1.16 | 18.6 | 5.7 | 70.0 | 2.1 | | | 4.50 | 0.6 | 1.4 | 15.0 | 11.6 | 1.49 | 20.1 | 10.1 | 119.6 | 4.4 | | | | | | | | | | | | 2.25 | 0.1 | 0.2 | 14.1 | 11.4 | 1.79 | 20.2 | 7.9 | 139.4 | 6.7 | | | | | | | | | | | 120 | 3.37 | 0.4 | 0.8 | 14.2 | 11.2 | 1.74 | 20.1 | 8.1 | 132.9 | 5.9 | 0.74 | 0.1 | 0.2 | 22.6 | 1.16 | 18.6 | 5.7 | 70.0 | 2.1 | | | 4.50 | 0.6 | 1.4 | 14.3 | 11.1 | 1.70 | 20.1 | 8.4 | 129.6 | 5.5 | | | | | | | | | | - Interpolation is permissible; extrapolation is not. All entering air conditions are 80°F (26.6°C) DB and 67°F (19.4°C) WB in cooling, and 70°F (21°C) DB in heating. - AHRI/ISO certified conditions are 80.6° [27°C] DB and 66.2°F [19°C] WB in cooling and 68°F (20°C) DB in heating. Table does not reflect fan or pump power corrections for AHRI/ISO conditions. - All performance is based upon the lower voltage of dual voltage rated units. Performance stated is at the rated power supply; performance may vary as the power supply varies from the rated. - Operation below 50°F (10.0°C) EWT is based upon 15% methanol antifreeze solution. - Operation below 60°F (15.5°C) EWT requires optional insulated water/refrigerant circuit. - See performance correction tables for operating conditions other than those listed above. See Performance Data Selection Notes for operation in the shaded areas. - Regular Cooling operation with an EWT of less than 50° F (10.0° C) is not recommended unless variable water flow is available. Regular Heating operation with an EWT of more than 90° F (32° C) is not recommended unless variable water flow is available. - For quiet operation and long term reliability, it is recommended that systems be designed to avoid continuous operation in the outlined areas. - Performance capacities shown in thousands of Btuh. - The HWG option is available only on the Tranquility SJ. #### **800 CFM Rated Airflow** | EWT | | WPD | | | Co | oling - E | AT 80/8 | 57°F | | HWG | | WPD | | | HE | ATING - | - EAT 70 |)°F | | |-----|-------------|-----|-----|-----------|--------|-------------|---------|------|-------|-----|-------------|-----|-----|------|-------------|---------|----------|------|------------| | °F | FLOW
GPM | PSI | FT | TC | sc | Power
kW | HR | EER | LWT | Сар | FLOW
GPM | PSI | FT | нс | Power
kW | HE | СОР | LWT | HWG
Cap | | | | | | a a wardi | an Nat | D | | -d | | | | | | | | | | | | | 20 | | | , | peran | on Not | Recomi | nenae | a | | | 6.00 | 1.4 | 3.1 | 15.0 | 1.47 | 10.0 | 3.0 | 16.5 | 1.5 | | | | | | | | | | | | | 3.00 | 0.3 | 0.7 | 16.7 | 1.47 | 11.6 | 3.3 | 21.9 | 1.6 | | 30 | 1.86 | 0.1 | 0.2 | 24.1 | 15.3 | 1.13 | 27.9 | 21.4 | 60.0 | 1.4 | 4.50 | 0.9 | 2.0 | 17.1 | 1.48 | 12.0 | 3.4 | 24.4 | 1.8 | | | | | | | | | | | | | 6.00 | 1.4 | 3.3 | 17.5 | 1.49 | 12.4 | 3.4 | 25.7 | 1.8 | | | | | | | | | | | | | 3.00 | 0.2 | 0.5 | 20.5 | 1.52 | 15.3 | 4.0 | 34.3 | 2.0 | | 40 | 2.80 | 0.4 | 0.8 | 24.3 | 15.6 | 1.08 | 28.0 | 22.5 | 60.0 | 1.4 | 4.50 | 0.8 | 1.8 | 20.9 | 1.53 | 15.7 | 4.0 | 37.7 | 2.1 | | | | | | | | | | | | | 6.00 | 1.3 | 3.1 | 21.3 | 1.53 | 16.1 | 4.1 | 39.4 | 2.2 | | | 3.00 | 0.4 | 0.9 | 24.5 | 16.2 | 1.18 | 28.6 | 20.7 | 69.8 | 1.5 | 3.00 | 0.2 | 0.4 | 21.8 | 1.53 | 16.6 | 4.2 | 38.5 | 2.4 | | 50 | 4.50 | 0.8 | 1.9 | 24.4 | 15.9 | 1.13 | 28.2 | 21.7 | 63.1 | 1.4 | 4.50 | 0.7 | 1.7 | 22.2 | 1.54 | 17.0 | 4.2 | 42.1 | 2.5 | | | 6.00 | 1.3 | 2.9 | 24.3 | 15.7 | 1.07 | 27.9 | 22.7 | 59.7 | 1.4 | 6.00 | 1.3 | 3.0 | 22.6 | 1.55 | 17.3 | 4.3 | 44.0 | 2.6 | | | 3.00 | 0.3 | 0.7 | 24.5 | 16.8 | 1.30 | 28.9 | 18.9 | 80.1 | 1.9 | 3.00 | 0.1 | 0.2 | 24.5 | 1.58 | 19.1 | 4.5 | 46.7 | 2.7 | | 60 | 4.50 | 0.8 | 1.8 | 24.4 | 16.6 | 1.24 | 28.6 | 19.6 | 73.3 | 1.6 | 4.50 | 0.7 | 1.5 | 24.9 | 1.59 | 19.4 | 4.6 | 51.0 | 2.9 | | | 6.00 | 1.2 | 2.8 | 24.3 | 16.3 | 1.19 | 28.3 | 20.4 | 69.8 | 1.4 | 6.00 | 1.2 | 2.8 | 25.2 | 1.60 | 19.8 | 4.6 | 53.1 | 3.0 | | | 3.00 | 0.3 | 0.6 | 24.3 | 17.3 | 1.44 | 29.2 | 16.9 | 90.3 | 2.4 | 3.00 | 0.1 | 0.1 | 27.1 | 1.63 | 21.5 | 4.9 | 55.0 | 3.1 | | 70 | 4.50 | 0.7 | 1.7 | 24.1 | 17.0 | 1.38 | 28.8 | 17.5 | 83.4 | 2.0 | 4.50 | 0.6 | 1.4 | 27.4 | 1.64 | 21.9 | 4.9 | 59.8 | 3.3 | | | 6.00 | 1.2 | 2.7 | 24.0 | 16.8 | 1.32 | 28.5 | 18.1 | 79.9 | 1.9 | 6.00 | 1.2 | 2.7 | 27.8 | 1.65 | 22.2 | 5.0 | 62.3 | 3.4 | | | 3.00 | 0.2 | 0.6 | 23.8 | 17.6 | 1.59 | 29.2 | 14.9 | 100.4 | 3.1 | 3.00 | 0.1 | 0.3 | 29.6 | 1.69 | 23.8 | 5.1 | 63.3 | 3.4 | | 80 | 4.50 | 0.7 | 1.6 | 23.7 | 17.3 | 1.54 | 28.9 | 15.4 | 93.5 | 2.6 | 4.50 | 0.7 | 1.6 | 30.0 | 1.70 | 24.2 | 5.2 | 68.7 | 3.5 | | | 6.00 | 1.1 | 2.6 | 23.5 | 17.0 | 1.48 | 28.6 | 15.9 | 90.0 | 2.4 | 6.00 | 1.3 | 2.9 | 30.4 | 1.71 | 24.6 | 5.2 | 71.4 | 3.5 | | | 3.00 | 0.2 | 0.5 | 23.1 | 17.6 | 1.77 | 29.1 | 13.0 | 110.5 | 3.8 | | | | | | | | | | | 90 | 4.50 | 0.7 | 1.5 | 23.0 | 17.3 | 1.72 | 28.8 | 13.4 | 103.5 | 3.3 | 2.59 | 0.1 | 0.2 | 31.8 | 1.75 | 25.9 | 5.3 | 70.0 | 3.5 | | | 6.00 | 1.1 | 2.6 | 22.8 | 17.0 | 1.66 | 28.5 | 13.8 | 100.0 | 3.0 | | | | | | | | | | | | 3.00 | 0.2 | 0.4 | 22.2 | 17.2 | 1.97 | 28.9 | 11.2 | 120.4 | 4.6 | | | | | | | | | | | 100 | 4.50 | 0.6 | 1.4 | 22.1 | 16.9 | 1.92 | 28.6 | 11.5 | 113.5 | 4.0 | 1.72 | 0.1 | 0.2 | 31.8 | 1.75 | 25.9 | 5.3 | 70.0 | 3.5 | | | 6.00 | 1.1 | 2.5 | 21.9 | 16.7 | 1.86 | 28.3 | 11.8 | 110.0 | 3.8 | | | | | | | | | | | | 3.00 | 0.1 | 0.3 | 21.1 | 16.5 | 2.20 | 28.6 | 9.6 | 130.4 | 5.5 | | | | | | | | | | | 110 | 4.50 | 0.6 | 1.4 | 21.0 | 16.2 | 2.14 | 28.3 | 9.8 | 123.4 | 4.9 | 1.29 | 0.1 | 0.2 | 31.8 | 1.75 | 25.9 | 5.3 | 70.0 | 3.5 | | | 6.00 | 1.0 | 2.4 | 20.9 | 15.9 | 2.09 | 28.0 | 10.0 | 120.0 | 4.6 | | | | | | | | | | | | 3.00 | 0.1 | 0.2 | 19.8 | 15.3 | 2.45 | 28.2 | 8.1 | 140.3 | 6.5 | | | | | | | | | | | 120 | 4.50 | 0.6 | 1.3 | 19.7 | 15.0 | 2.39 | 27.9 | 8.2 | 133.4 | 5.8 | 1.03 | 0.1 | 0.2 | 31.8 | 1.75 | 25.9 | 5.3 | 70.0 | 3.5 | | | 6.00 | 1.0 | 2.3 | 19.6 | 14.7 | 2.34 | 27.5 | 8.4 | 129.9 | 5.5 | | | | | | | | | | - Interpolation is permissible; extrapolation is not. All entering air conditions are 80°F (26.6°C) DB and 67°F (19.4°C) WB in cooling, and 70°F (21°C) DB in heating. - AHRI/ISO certified conditions are 80.6°F (27°C) DB and 66.2°F (19°C) WB in cooling and 68°F (20°C) DB in heating. Table does not reflect fan or pump power corrections for AHRI/ISO conditions. - All performance is based upon the lower voltage of dual voltage rated units. Performance stated is at the rated power supply; performance may vary as the power supply varies from the rated. - Operation below 50°F (10.0°C) EWT is based upon 15% methanol antifereeze solution. Operation below 60°F (15.5°C) EWT requires optional insulated water/refrigerant circuit. - See performance correction tables for operating conditions other than those listed above. - See Performance Data Selection Notes for operation in the shaded areas. - Regular Cooling operation with an EWT of less than 50°F (10.0°C) is not recommended unless variable water flow is available. Regular Heating operation with an EWT of more than 90°F (32°C) is not recommended unless variable water flow is available. For quiet operation and long term reliability, it is recommended that systems be designed to avoid continuous operation in the outlined areas. - Performance capacities shown in thousands of Btuh. - The HWG option is available only on the Tranquility SJ. #### 900 CFM Rated Airflow |
EWT | | WPD | | | Co | oling - E | AT 80/6 | 57°F | | HWG | | WPD | | | HEA | ATING | - EAT 70 |)°F | | |-----|-------------|-----|-----|---------|--------|-------------|---------|------|-------|-----|------|-----|------|------|-------------|-------|----------|------|------------| | °F | FLOW
GPM | PSI | FT | TC | sc | Power
kW | HR | EER | LWT | Cap | FLOW | PSI | FT | нс | Power
kW | HE | СОР | LWT | HWG
Cap | | | OTM | | | | | KW | | | | | OTM | | | | KW | | | | Cup | | 20 | | | C |)perati | on Not | Recomi | nende | d | | | 6.75 | 5.2 | 12.1 | 17.4 | 1.79 | 11.3 | 2.8 | 16.5 | 1.6 | | | | | | | | | | | | | 3.38 | 2.1 | 4.9 | 18.3 | 1.58 | 12.9 | 3.4 | 22.0 | 1.7 | | 30 | 2.18 | 1.4 | 3.1 | 29.0 | 18.3 | 1.10 | 32.7 | 26.3 | 60.0 | 1.2 | 5.06 | 3.4 | 7.7 | 18.7 | 1.59 | 13.3 | 3.5 | 24.5 | 1.8 | | | | | | | | | | | | | 6.75 | 4.6 | 10.6 | 19.2 | 1.60 | 13.7 | 3.5 | 25.7 | 1.9 | | | | | | | | | | | | | 3.38 | 1.3 | 3.0 | 22.1 | 1.52 | 17.0 | 4.3 | 34.5 | 2.0 | | 40 | 3.40 | 1.7 | 3.8 | 30.8 | 21.9 | 0.96 | 34.0 | 32.0 | 60.0 | 1.2 | 5.06 | 2.5 | 5.8 | 22.6 | 1.53 | 17.4 | 4.3 | 37.8 | 2.1 | | | | | | | | | | | | | 6.75 | 3.7 | 8.6 | 23.1 | 1.54 | 17.8 | 4.4 | 39.5 | 2.2 | | | 3.38 | 1.5 | 3.4 | 31.3 | 22.8 | 1.05 | 34.9 | 30.0 | 71.6 | 1.3 | 3.38 | 1.1 | 2.4 | 23.6 | 1.54 | 18.4 | 4.5 | 38.6 | 2.3 | | 50 | 5.06 | 2.5 | 5.8 | 31.1 | 22.6 | 1.00 | 34.5 | 30.9 | 64.2 | 1.2 | 5.06 | 2.3 | 5.2 | 24.1 | 1.55 | 18.8 | 4.6 | 42.2 | 2.4 | | | 6.75 | 3.6 | 8.2 | 30.8 | 22.4 | 0.96 | 34.1 | 32.0 | 60.5 | 1.2 | 6.75 | 3.5 | 8.1 | 24.6 | 1.55 | 19.2 | 4.6 | 44.1 | 2.5 | | | 3.38 | 1.2 | 2.8 | 31.2 | 23.3 | 1.19 | 35.2 | 26.3 | 81.8 | 1.9 | 3.38 | 0.7 | 1.6 | 26.8 | 1.61 | 21.3 | 4.9 | 46.8 | 2.6 | | 60 | 5.06 | 2.2 | 5.2 | 30.9 | 23.2 | 1.14 | 34.8 | 27.1 | 74.3 | 1.4 | 5.06 | 1.9 | 4.4 | 27.2 | 1.62 | 21.7 | 4.9 | 51.0 | 2.7 | | | 6.75 | 3.3 | 7.6 | 30.7 | 23.0 | 1.10 | 34.4 | 27.9 | 70.6 | 1.3 | 6.75 | 3.1 | 7.2 | 27.7 | 1.62 | 22.2 | 5.0 | 53.2 | 2.8 | | | 3.38 | 1.0 | 2.2 | 30.3 | 23.1 | 1.38 | 35.0 | 21.9 | 91.7 | 2.7 | 3.38 | 0.4 | 1.0 | 30.0 | 1.69 | 24.2 | 5.2 | 55.0 | 2.8 | | 70 | 5.06 | 2.0 | 4.6 | 30.0 | 22.9 | 1.34 | 34.6 | 22.4 | 84.3 | 2.1 | 5.06 | 1.6 | 3.8 | 30.4 | 1.70 | 24.6 | 5.3 | 59.8 | 2.9 | | | 6.75 | 3.0 | 7.0 | 29.8 | 22.7 | 1.30 | 34.2 | 22.9 | 80.6 | 1.8 | 6.75 | 2.8 | 6.6 | 30.9 | 1.70 | 25.1 | 5.3 | 62.2 | 3.0 | | | 3.38 | 0.7 | 1.7 | 28.9 | 22.2 | 1.62 | 34.5 | 17.8 | 101.4 | 3.7 | 3.38 | 0.3 | 0.7 | 33.0 | 1.74 | 27.1 | 5.6 | 63.2 | 3.0 | | 80 | 5.06 | 1.8 | 4.1 | 28.7 | 22.1 | 1.58 | 34.1 | 18.2 | 94.1 | 2.9 | 5.06 | 1.5 | 3.5 | 33.5 | 1.75 | 27.5 | 5.6 | 68.6 | 3.1 | | | 6.75 | 2.8 | 6.5 | 28.4 | 21.9 | 1.54 | 33.7 | 18.5 | 90.5 | 2.6 | 6.75 | 2.7 | 6.3 | 33.9 | 1.76 | 27.9 | 5.7 | 71.3 | 3.1 | | | 3.38 | 0.6 | 1.3 | 27.3 | 21.2 | 1.89 | 33.7 | 14.5 | 111.0 | 4.9 | | | | | | | | | | | 90 | 5.06 | 1.6 | 3.7 | 27.0 | 21.0 | 1.84 | 33.3 | 14.7 | 103.9 | 4.0 | 2.96 | 0.1 | 0.2 | 35.5 | 1.72 | 29.6 | 6.0 | 70.0 | 3.1 | | | 6.75 | 2.6 | 6.1 | 26.8 | 20.8 | 1.80 | 32.9 | 14.9 | 100.3 | 3.6 | | | | | | | | | | | | 3.38 | 0.4 | 1.0 | 25.6 | 20.1 | 2.15 | 33.0 | 11.9 | 120.7 | 6.3 | | | | | | | | | | | 100 | 5.06 | 1.5 | 3.4 | 25.4 | 20.0 | 2.11 | 32.6 | 12.0 | 113.6 | 5.2 | 1.97 | 0.1 | 0.2 | 35.5 | 1.72 | 29.6 | 6.0 | 70.0 | 3.1 | | | 6.75 | 2.5 | 5.8 | 25.1 | 19.8 | 2.07 | 32.1 | 12.1 | 110.1 | 4.8 | | | | | | | | | | | | 3.38 | 0.4 | 0.9 | 24.1 | 19.4 | 2.41 | 32.4 | 10.0 | 130.5 | 7.9 | | | | | | | | | | | 110 | 5.06 | 1.4 | 3.3 | 23.9 | 19.3 | 2.37 | 32.0 | 10.1 | 123.5 | 6.7 | 1.48 | 0.1 | 0.2 | 35.5 | 1.72 | 29.6 | 6.0 | 70.0 | 3.1 | | | 6.75 | 2.4 | 5.7 | 23.6 | 19.1 | 2.33 | 31.6 | 10.2 | 120.0 | 6.2 | | | | | | | | | | | | 3.38 | 0.4 | 0.9 | 23.1 | 19.4 | 2.64 | 32.1 | 8.8 | 140.5 | 9.7 | | | | | | | | | | | 120 | 5.06 | 1.4 | 3.3 | 22.8 | 19.2 | 2.59 | 31.7 | 8.8 | 133.5 | 8.5 | 1.18 | 0.1 | 0.2 | 35.5 | 1.72 | 29.6 | 6.0 | 70.0 | 3.1 | | | 6.75 | 2.5 | 5.7 | 22.6 | 19.1 | 2.55 | 31.3 | 8.9 | 130.0 | 7.8 | | | | | | | | | | - Interpolation is permissible; extrapolation is not. - All entering air conditions are 80°F (26.6°C) DB and 67°F (19.4°C) WB in cooling, and 70°F (21°C) DB in heating. - AHRI/ISO certified conditions are 80.6°F (27°C) DB and 66.2°F (19°C) WB in cooling and 68°F (20°C) DB in heating. Table does not reflect fan or pump power corrections for AHRI/ISO conditions. - All performance is based upon the lower voltage of dual voltage rated units. Performance stated is at the rated power supply; performance may vary as the power supply varies from the rated. - Operation below 50°F (10.0°C) EWT is based upon 15% methanol antifreeze solution. Operation below 60°F (15.5°C) EWT requires optional insulated water/refrigerant circuit. See performance correction tables for operating conditions other than those listed above. - See Performance Data Selection Notes for operation in the shaded areas. - Regular Cooling operation with an EWT of less than 50°F (10.0°C) is not recommended unless variable water flow is available. Regular Heating operation with an EWT of more than 90°F (32°C) is not recommended unless variable water flow is available. For quiet operation and long term reliability, it is recommended that systems be designed to avoid continuous operation in the outlined areas. - Performance capacities shown in thousands of Btuh. - The HWG option is available only on the Tranquility SJ. #### 1,200 CFM Rated Airflow | EWT | | | | | Cod | oling - E | AT 80/8 | 57°F | | HWG | | WPD | | | HE | ATING | - EAT 70 |)°F | | |-----|-------------|-----|------|----------|--------|-------------|---------|-------|-------|-----|-------------|-----|------|------|-------------|-------|----------|------|------------| | °F | FLOW
GPM | PSI | FT | TC | sc | Power
kW | HR | EER | LWT | Cap | FLOW
GPM | PSI | FT | нс | Power
kW | HE | СОР | LWT | HWG
Cap | | 20 | | | _ |) nerati | on Not | Recomi | manda | d | | | | | | | | | | | | | | | | | peran | on Noi | Kecoiiii | nenue | u
 | | | 9.00 | 8.9 | 20.6 | 25.8 | 2.29 | 18.0 | 3.3 | 15.8 | 1.9 | | | | | | | | | | | | | 4.50 | 2.6 | 6.1 | 25.7 | 2.18 | 18.3 | 3.5 | 21.5 | 2.2 | | 30 | 3.03 | 2.1 | 4.8 | 39.5 | 25.5 | 1.74 | 45.5 | 22.7 | 60.0 | 1.8 | 6.75 | 4.9 | 11.3 | 26.5 | 2.19 | 19.0 | 3.5 | 24.1 | 2.4 | | | | | | | | | | | | | 9.00 | 7.2 | 16.6 | 27.2 | 2.21 | 19.7 | 3.6 | 25.4 | 2.4 | | | | | | | | | | | | | 4.50 | 0.8 | 1.7 | 31.0 | 2.25 | 23.3 | 4.0 | 34.2 | 2.7 | | 40 | 4.77 | 2.2 | 5.2 | 41.7 | 28.4 | 1.75 | 47.7 | 23.8 | 60.0 | 1.8 | 6.75 | 3.0 | 7.0 | 31.7 | 2.26 | 24.0 | 4.1 | 37.6 | 2.8 | | | | | | | | | | | | | 9.00 | 5.3 | 12.2 | 32.5 | 2.28 | 24.7 | 4.2 | 39.3 | 2.9 | | | 4.50 | 1.7 | 4.0 | 41.8 | 29.6 | 1.90 | 48.3 | 22.0 | 72.4 | 1.8 | 4.50 | 0.3 | 0.7 | 33.2 | 2.30 | 25.4 | 4.2 | 38.3 | 3.1 | | 50 | 6.75 | 3.6 | 8.2 | 41.8 | 29.2 | 1.83 | 48.0 | 22.8 | 64.8 | 1.8 | 6.75 | 2.6 | 6.0 | 33.9 | 2.32 | 26.0 | 4.3 | 42.0 | 3.3 | | | 9.00 | 5.4 | 12.4 | 41.8 | 28.8 | 1.77 | 47.8 | 23.7 | 61.1 | 1.8 | 9.00 | 4.9 | 11.3 | 34.7 | 2.33 | 26.7 | 4.4 | 43.8 | 3.4 | | | 4.50 | 1.4 | 3.1 | 41.2 | 30.1 | 2.05 | 48.1 | 20.1 | 82.3 | 2.5 | 4.50 | 0.1 | 0.2 | 37.7 | 2.42 | 29.4 | 4.6 | 46.4 | 3.6 | | 60 | 6.75 | 3.2 | 7.3 | 41.2 | 29.7 | 1.98 | 47.9 | 20.8 | 74.8 | 2.0 | 6.75 | 2.0 | 4.7 | 38.4 | 2.43 | 30.1 | 4.6 | 50.7 | 3.8 | | | 9.00 | 5.0 | 11.5 | 41.1 | 29.3 | 1.91 | 47.7 | 21.5 | 71.0 | 1.8 | 9.00 | 4.3 | 9.9 | 39.1 | 2.45 | 30.8 | 4.7 | 52.9 | 3.9 | | | 4.50 | 1.1 | 2.7 | 39.8 | 29.8 | 2.21 | 47.3 | 18.0 | 92.0 | 3.2 | 4.50 | 0.1 | 0.2 | 41.6 | 2.51 | 33.0 | 4.8 | 54.7 | 4.1 | | 70 | 6.75 | 3.0 | 6.8 | 39.8 | 29.4 | 2.15 | 47.1 | 18.6 | 84.6 | 2.7 | 6.75 | 1.8 | 4.2 | 42.3 | 2.53 | 33.7 | 4.9 | 59.6 | 4.3 | | | 9.00 | 4.8 | 11.0 | 39.8 | 29.0 | 2.08 | 46.9 | 19.2 | 80.9 | 2.4 | 9.00 | 4.1 | 9.5 | 43.0 | 2.54 | 34.4 | 5.0 | 62.0 | 4.4 | | | 4.50 | 1.1 | 2.5 | 38.0 | 29.0 | 2.40 | 46.2 | 15.8 | 101.5 | 4.1 | 4.50 | 0.1 | 0.2 | 44.1 | 2.55 | 35.5 | 5.1 | 63.5 | 4.5 | | 80 | 6.75 | 2.9 | 6.6 | 38.0 | 28.6 | 2.34 | 46.0 | 16.3 | 94.3 | 3.5 | 6.75 | 2.0 | 4.6 | 44.9 | 2.56 | 36.1 | 5.1 | 68.8 | 4.6 | | | 9.00 | 4.7 | 10.8 | 38.0 | 28.2 | 2.27 | 45.7 | 16.7 | 90.6 | 3.1 | 9.00 | 4.3 | 9.9 | 45.6 | 2.58 | 36.8 | 5.2 | 71.4 | 4.6 | | | 4.50 | 1.1 | 2.5 | 36.1 | 27.9 | 2.63 | 45.1 | 13.7 | 111.1 | 5.1 | | | | | | | | | | | 90 | 6.75 | 2.9 | 6.7 | 36.1 | 27.5 | 2.56 | 44.8 | 14.1 | 104.0 | 4.5 | 3.56 | 0.1 | 0.2 | 44.0 | 2.46 | 35.6 | 5.2 | 70.0 | 4.6 | | | 9.00 | 4.7 | 10.8 | 36.1 | 27.1 | 2.49 | 44.6 | 14.5 | 100.4 | 4.1 | | | | | | | | | | | | 4.50 | 1.1 | 2.6 | 34.5 | 26.8 | 2.90 | 44.3 | 11.9 | 120.9 | 6.3 | | | | | | | | | | | 100 | 6.75 | 2.9 | 6.8 | 34.4 | 26.5 | 2.83 | 44.1 | 12.2 | 113.9 | 5.5 | 2.37 | 0.1 | 0.2 | 44.0 | 2.46 | 35.6 | 5.2 | 70.0 | 4.6 | | | 9.00 | 4.7 | 10.9 | 34.4 | 26.1 | 2.76 | 43.9 | 12.5 | 110.3 | 5.1 | | | | | | | | | | | | 4.50 | 1.2 | 2.7 | 33.3 | 26.1 | 3.21 | 44.3 | 10.4 | 131.1 | 7.7 | | | | | | | | | | | 110 | 6.75 | 3.0 | 6.8 | 33.3 | 25.7 | 3.15 | 44.1 | 10.6 | 124.0 | 6.7 | 1.78 | 0.1 | 0.2 | 44.0 | 2.46 | 35.6 | 5.2 | 70.0 | 4.6 | | | 9.00 | 4.8 | 11.0 | 33.3 | 25.3 | 3.08 | 43.8 | 10.8 | 120.4 | 6.4 | | | | | | | | | | | | 4.50 | 1.1 | 2.6 | 33.1 | 26.0 | 3.59 | 45.4 | 9.2 | 141.8 | 9.2 | | | | | | | | | | | 120 | 6.75 | 2.9 | 6.8 | 33.1 | 25.6 | 3.52 | 45.1 | 9.4 | 134.4 | 8.2 | 1.42 | 0.1 | 0.2 | 44.0 | 2.46 | 35.6 | 5.2 | 70.0 | 4.6 | | | 9.00 | 4.7 | 10.9 | 33.1 | 25.2 | 3.45 | 44.9 | 9.6 | 130.8 | 7.7 | | | | | | | | | | - Interpolation is permissible; extrapolation is not. All entering air conditions are 80°F (26.6°C) DB and 67°F (19.4°C) WB in cooling, and 70°F (21°C) DB in heating. - AHRI/ISO certified conditions are 80.6°F (27°C) DB and 66.2°F (19°C) WB in cooling and 68°F (20°C) DB in heating. Table does not reflect fan or pump power corrections for AHRI/ISO conditions. - All performance is based upon the lower voltage of dual voltage rated units. Performance stated
is at the rated power supply; performance may vary as the power supply varies from the rated. - Operation below 50°F (10.0°C) EWT is based upon 15% methanol antifreeze solution. Operation below 60°F (15.5°C) EWT requires optional insulated water/refrigerant circuit. See performance correction tables for operating conditions other than those listed above. - See Performance Data Selection Notes for operation in the shaded areas. - Regular Cooling operation with an EWT of less than 50°F (10.0°C) is not recommended unless variable water flow is available. Regular Heating operation with an EWT of more than 90°F (32°C) is not recommended unless variable water flow is available. For quiet operation and long term reliability, it is recommended that systems be designed to avoid continuous operation in the outlined areas. - Performance capacities shown in thousands of Btuh. - The HWG option is available only on the Tranquility SJ. #### 1,200 CFM Rated Airflow | EWT | | WPD | | | Cod | oling - E | AT 80/6 | 57°F | | HWG | | WPD | | | HE | ATING | - EAT 70 |)°F | | |-----|-------------|-----|-----|----------|--------|-------------|---------|----------|-------|-----|-------------|-----|-----|------|-------------|-------|----------|------|------------| | °F | FLOW
GPM | PSI | FT | TC | sc | Power
kW | HR | EER | LWT | Сар | FLOW
GPM | PSI | FT | нс | Power
kW | HE | СОР | LWT | HWG
Cap | | 20 | | | _ |) nerati | on Not | Recomi | mende | d | | | | | | | | | | | | | | | | | perun | | | | <u> </u> | | | 9.00 | 2.1 | 4.9 | 18.3 | 2.14 | 11.0 | 2.5 | 17.4 | 2.3 | | | | | | | | | | | | | 4.50 | 0.6 | 1.3 | 22.1 | 2.16 | 14.7 | 3.0 | 23.2 | 2.4 | | 30 | 2.78 | 0.1 | 0.2 | 36.9 | 24.9 | 1.42 | 41.8 | 26.0 | 60.0 | 1.4 | 6.75 | 1.3 | 2.9 | 23.0 | 2.17 | 15.5 | 3.1 | 25.2 | 2.4 | | | | | | | | | | | | | 9.00 | 2.0 | 4.5 | 23.8 | 2.18 | 16.4 | 3.2 | 26.2 | 2.4 | | | | | | | | | | | | | 4.50 | 0.4 | 1.0 | 29.6 | 2.21 | 22.0 | 3.9 | 34.8 | 2.5 | | 40 | 4.37 | 0.4 | 1.0 | 39.2 | 27.5 | 1.31 | 43.7 | 29.9 | 60.0 | 1.4 | 6.75 | 1.1 | 2.6 | 30.4 | 2.22 | 22.9 | 4.0 | 37.9 | 2.5 | | | | | | | | | | | | | 9.00 | 1.8 | 4.2 | 31.3 | 2.22 | 23.7 | 4.1 | 39.5 | 2.5 | | | 4.50 | 0.5 | 1.0 | 39.2 | 28.6 | 1.48 | 44.2 | 26.5 | 70.5 | 1.4 | 4.50 | 0.4 | 0.9 | 31.9 | 2.22 | 24.3 | 4.2 | 38.8 | 2.6 | | 50 | 6.75 | 1.1 | 2.6 | 39.4 | 28.2 | 1.38 | 44.1 | 28.5 | 63.6 | 1.4 | 6.75 | 1.1 | 2.5 | 32.7 | 2.23 | 25.1 | 4.3 | 42.2 | 2.7 | | | 9.00 | 1.8 | 4.2 | 39.5 | 27.9 | 1.29 | 44.0 | 30.7 | 60.2 | 1.4 | 9.00 | 1.8 | 4.2 | 33.6 | 2.24 | 25.9 | 4.4 | 44.0 | 2.7 | | | 4.50 | 0.4 | 1.0 | 38.9 | 29.2 | 1.66 | 44.5 | 23.4 | 80.6 | 2.0 | 4.50 | 0.4 | 0.8 | 36.3 | 2.25 | 28.6 | 4.7 | 46.8 | 2.7 | | 60 | 6.75 | 1.1 | 2.5 | 39.0 | 28.9 | 1.57 | 44.4 | 24.9 | 73.7 | 1.5 | 6.75 | 1.1 | 2.4 | 37.1 | 2.26 | 29.4 | 4.8 | 50.9 | 2.8 | | | 9.00 | 1.8 | 4.1 | 39.2 | 28.5 | 1.47 | 44.2 | 26.6 | 70.2 | 1.4 | 9.00 | 1.8 | 4.1 | 38.0 | 2.27 | 30.2 | 4.9 | 53.0 | 2.8 | | | 4.50 | 0.4 | 0.9 | 37.8 | 29.1 | 1.88 | 44.2 | 20.1 | 90.5 | 2.7 | 4.50 | 0.3 | 0.8 | 40.4 | 2.29 | 32.6 | 5.2 | 54.8 | 2.8 | | 70 | 6.75 | 1.1 | 2.5 | 38.0 | 28.7 | 1.78 | 44.1 | 21.3 | 83.6 | 2.2 | 6.75 | 1.0 | 2.4 | 41.3 | 2.29 | 33.5 | 5.3 | 59.6 | 3.0 | | | 9.00 | 1.8 | 4.1 | 38.2 | 28.4 | 1.69 | 44.0 | 22.6 | 80.2 | 1.9 | 9.00 | 1.7 | 4.0 | 42.2 | 2.30 | 34.3 | 5.4 | 62.0 | 3.0 | | | 4.50 | 0.4 | 0.9 | 36.3 | 28.3 | 2.13 | 43.5 | 17.0 | 100.3 | 3.6 | 4.50 | 0.3 | 0.7 | 44.5 | 2.33 | 36.5 | 5.6 | 63.0 | 3.1 | | 80 | 6.75 | 1.1 | 2.5 | 36.4 | 27.9 | 2.04 | 43.4 | 17.9 | 93.5 | 2.9 | 6.75 | 1.0 | 2.3 | 45.4 | 2.34 | 37.4 | 5.7 | 68.4 | 3.2 | | | 9.00 | 1.7 | 4.0 | 36.6 | 27.6 | 1.94 | 43.3 | 18.9 | 90.1 | 2.7 | 9.00 | 1.7 | 4.0 | 46.2 | 2.35 | 38.2 | 5.8 | 71.1 | 3.2 | | | 4.50 | 0.4 | 0.9 | 34.3 | 27.0 | 2.42 | 42.5 | 14.2 | 109.9 | 4.7 | | | | | | | | | | | 90 | 6.75 | 1.1 | 2.4 | 34.5 | 26.7 | 2.32 | 42.4 | 14.9 | 103.2 | 3.9 | 4.01 | 0.1 | 0.2 | 48.2 | 2.39 | 40.1 | 5.9 | 70.0 | 3.2 | | | 9.00 | 1.7 | 4.0 | 34.7 | 26.3 | 2.23 | 42.3 | 15.6 | 99.9 | 3.6 | | | | | | | | | | | | 4.50 | 0.4 | 0.8 | 32.0 | 25.5 | 2.74 | 41.4 | 11.7 | 119.5 | 6.0 | | | | | | | | | | | 100 | 6.75 | 1.0 | 2.4 | 32.2 | 25.2 | 2.64 | 41.2 | 12.2 | 113.0 | 5.1 | 2.67 | 0.1 | 0.2 | 48.2 | 2.39 | 40.1 | 5.9 | 70.0 | 3.2 | | | 9.00 | 1.7 | 4.0 | 32.4 | 24.8 | 2.55 | 41.1 | 12.7 | 109.7 | 4.8 | | | | | | | | | | | | 4.50 | 0.3 | 0.8 | 29.7 | 23.9 | 3.09 | 40.2 | 9.6 | 129.1 | 7.4 | | | | | | | | | | | 110 | 6.75 | 1.0 | 2.4 | 29.8 | 23.6 | 3.00 | 40.1 | 10.0 | 122.7 | 6.5 | 2.00 | 0.1 | 0.2 | 48.2 | 2.39 | 40.1 | 5.9 | 70.0 | 3.2 | | | 9.00 | 1.7 | 3.9 | 30.0 | 23.2 | 2.90 | 39.9 | 10.4 | 119.5 | 6.1 | | | | | | | | | | | | 4.50 | 0.3 | 0.7 | 27.3 | 22.4 | 3.48 | 39.1 | 7.8 | 138.8 | 9.1 | | | | | | | | | | | 120 | 6.75 | 1.0 | 2.3 | 27.4 | 22.1 | 3.38 | 39.0 | 8.1 | 132.5 | 8.1 | 1.60 | 0.1 | 0.2 | 48.2 | 2.39 | 40.1 | 5.9 | 70.0 | 3.2 | | | 9.00 | 1.7 | 3.9 | 27.6 | 21.7 | 3.29 | 38.8 | 8.4 | 129.3 | 7.6 | | | | | | | | | | - Interpolation is permissible; extrapolation is not. All entering air conditions are 80°F (26.6°C) DB and 67°F (19.4°C) WB in cooling, and 70°F (21°C) DB in heating. - AHRI/ISO certified conditions are 80.6°F (27°C) DB and 66.2°F (19°C) WB in cooling and 68°F (20°C) DB in heating. Table does not reflect fan or pump power corrections for AHRI/ISO conditions. - All performance is based upon the lower voltage of dual voltage rated units. Performance stated is at the rated power supply; performance may vary as the power supply varies from the rated. - Operation below 50°F (10.0°C) EWT is based upon 15% methanol antifreeze solution. Operation below 60°F (15.5°C) EWT requires optional insulated water/refrigerant circuit. See performance correction tables for operating conditions other than those listed above. - See Performance Data Selection Notes for operation in the shaded areas. - Regular Cooling operation with an EWT of less than 50°F (10.0°C) is not recommended unless variable water flow is available. Regular Heating operation with an EWT of more than 90°F (32°C) is not recommended unless variable water flow is available. For quiet operation and long term reliability, it is recommended that systems be designed to avoid continuous operation in the outlined areas. - Performance capacities shown in thousands of Btuh. - The HWG option is available only on the Tranquility SJ. #### 1,600 CFM Rated Airflow | EWT | | WPD | | | Co | oling - E | AT 80/8 | 57°F | | HWG | | WPD | | | HE | ATING | - EAT 70 |)°F | | |-----|-------------|-----|-----|---------|--------|-------------|---------|------|-------|------|-------------|-----|-----|------|-------------|-------|----------|------|------------| | °F | FLOW
GPM | PSI | FT | TC | sc | Power
kW | HR | EER | LWT | Сар | FLOW
GPM | PSI | FT | нс | Power
kW | HE | СОР | LWT | HWG
Cap | | 20 | | | c |)perati | on Not | Recomr | mende | d | | | | | | | | | | | | | | | | | polani | | | | | | | 12.00 | 3.7 | 8.5 | 30.2 | 3.16 | 19.5 | 2.8 | 16.6 | 3.0 | | | | | | | | | | | | | 6.00 | 0.9 | 2.2 | 33.3 | 3.13 | 22.6 | 3.1 | 22.1 | 3.2 | | 30 | 3.81 | 0.2 | 0.4 | 48.9 | 31.7 | 2.44 | 57.2 | 20.0 | 60.0 | 2.3 | 9.00 | 2.1 | 5.0 | 34.7 | 3.15 | 23.9 | 3.2 | 24.4 | 3.2 | | | | | | | | | | | | | 12.00 | 3.4 | 7.8 | 36.1 | 3.18 | 25.3 | 3.3 | 25.6 | 3.3 | | | | | | | | | | | | | 6.00 | 0.7 | 1.5 | 41.9 | 3.24 | 30.8 | 3.8 | 34.3 | 3.4 | | 40 | 6.05 | 0.8 | 2.0 | 52.4 | 35.7 | 2.36 | 60.5 | 22.2 | 60.0 | 2.3 | 9.00 | 1.9 | 4.3 | 43.3 | 3.26 | 32.2 | 3.9 | 37.5 | 3.5 | | | | | | | | | | | | | 12.00 | 3.1 | 7.1 | 44.7 | 3.29 | 33.5 | 4.0 | 39.2 | 3.6 | | | 6.00 | 0.8 | 1.8 | 53.0 | 37.1 | 2.59 | 61.8 | 20.5 | 71.5 | 2.4 | 6.00 | 0.6 | 1.4 | 44.7 | 3.29 | 33.5 | 4.0 | 38.4 | 3.7 | | 50 | 9.00 | 1.9 | 4.5 | 52.9 | 36.7 | 2.47 | 61.3 | 21.4 | 64.2 | 2.3 | 9.00 | 1.8 | 4.2 | 46.1 | 3.32 | 34.8 | 4.1 | 41.9 | 3.8 | | | 12.00 | 3.1 | 7.2 | 52.8 | 36.2 | 2.36 | 60.8 | 22.4 | 60.6 | 2.3 | 12.00 | 3.0 | 7.0 | 47.6 | 3.34 | 36.1 | 4.2 | 43.7 | 3.9 | | | 6.00 | 0.7 | 1.7 | 52.8 | 37.9 | 2.81 | 62.4 | 18.8 | 81.7 | 2.9 | 6.00 | 0.6 | 1.3 | 50.3 | 3.42 | 38.6 | 4.3 | 46.6 | 4.1 | | 60 | 9.00 | 1.9 | 4.4 | 52.7 | 37.5 | 2.70 | 61.9 | 19.5 | 74.3 | 2.5 | 9.00 | 1.8 | 4.1 | 51.7 | 3.45 | 39.9 | 4.4 | 50.7 | 4.2 | | | 12.00 | 3.0 | 7.0 | 52.6 | 37.0 | 2.58 | 61.4 | 20.4 | 70.7 | 2.3 | 12.00 | 3.0 | 6.9 | 53.1 | 3.47 | 41.3 | 4.5 | 52.8 | 4.3 | | | 6.00 | 0.7 | 1.6 | 51.5 | 37.6 | 3.07 | 62.0 | 16.8 | 91.6 | 3.7 | 6.00 | 0.5 | 1.3 | 55.7 | 3.57 | 43.5 | 4.6 | 54.8 | 4.5 | | 70 | 9.00 | 1.8 | 4.3 | 51.4 | 37.2 | 2.95 | 61.5 | 17.4 | 84.3 | 3.1 | 9.00 | 1.8 | 4.1 | 57.2 | 3.60 | 44.9 | 4.7 | 59.6 | 4.7 | | | 12.00 | 3.0 | 6.9 | 51.3 | 36.7 | 2.83 | 61.0 | 18.1 | 80.6 | 2.9 | 12.00 | 3.0 | 6.9 | 58.6 | 3.63 | 46.2 | 4.7 | 62.0 | 4.7 | | | 6.00 | 0.7 | 1.5 | 49.5 | 36.5 | 3.35 | 60.9 | 14.8 | 101.3 | 4.5 | 6.00 | 0.5 | 1.2 | 61.1 | 3.74 | 48.3 | 4.8 | 63.1 | 4.8 | | 80 | 9.00 | 1.8 | 4.2 | 49.4 | 36.1 | 3.23 | 60.4 | 15.3 | 94.1 | 3.9 | 9.00 | 1.7 | 4.0 | 62.5 | 3.77 | 49.7 | 4.9 | 68.4 | 5.0 | | | 12.00 | 3.0 | 6.9 | 49.3 | 35.6 | 3.12 | 59.9 | 15.8 | 90.5 | 3.6 | 12.00 | 3.0 | 6.8 | 64.0 | 3.79 | 51.0 | 4.9 | 71.1 | 5.0 | | | 6.00 | 0.6 | 1.5 | 47.0 | 34.9 | 3.67 | 59.5 | 12.8 | 110.9 | 5.6 | | | | | | | | | | | 90 | 9.00 | 1.8 | 4.1 | 46.9 | 34.5 | 3.56 | 59.0 | 13.2 | 103.8 | 4.9 | 5.25 | 0.1 | 0.2 | 65.8 | 3.90 | 52.5 | 4.9 | 70.0 | 5.0 | | | 12.00 | 3.0 | 6.8 | 46.8 | 34.0 | 3.44 | 58.5 | 13.6 | 100.3 | 4.6 | | | | | | | | | | | | 6.00 | 0.6 | 1.4 | 44.4 | 33.1 | 4.04 | 58.2 | 11.0 | 120.6 | 6.9 | | | | | | | | | | | 100 | 9.00 | 1.8 | 4.1 | 44.3 | 32.7 | 3.92 | 57.7 | 11.3 | 113.6 | 6.1 | 3.50 | 0.1 | 0.2 | 65.8 | 3.90 | 52.5 | 4.9 | 70.0 | 5.0 | | | 12.00 | 2.9 | 6.8 | 44.2 | 32.2 | 3.81 | 57.2 | 11.6 | 110.1 | 5.7 | | | | | | | | | | | | 6.00 | 0.6 | 1.4 | 42.1 | 31.5 | 4.45 | 57.2 | 9.5 | 130.4 | 8.5 | | | | | | | | | | | 110 | 9.00 | 1.7 | 4.0 | 42.0 | 31.1 | 4.33 |
56.7 | 9.7 | 123.5 | 7.5 | 2.62 | 0.1 | 0.2 | 65.8 | 3.90 | 52.5 | 4.9 | 70.0 | 5.0 | | | 12.00 | 2.9 | 6.7 | 41.9 | 30.6 | 4.22 | 56.3 | 9.9 | 120.0 | 7.0 | | | | | | | | | | | | 6.00 | 0.5 | 1.3 | 40.3 | 30.4 | 4.92 | 57.0 | 8.2 | 140.5 | 10.4 | | | | | | | | | | | 120 | 9.00 | 1.7 | 3.9 | 40.2 | 30.0 | 4.80 | 56.5 | 8.4 | 133.6 | 9.1 | 2.10 | 0.1 | 0.2 | 65.8 | 3.90 | 52.5 | 4.9 | 70.0 | 5.0 | | | 12.00 | 2.9 | 6.6 | 40.1 | 29.5 | 4.68 | 56.1 | 8.6 | 130.1 | 8.6 | | | | | | | | | | - Interpolation is permissible; extrapolation is not. - All entering air conditions are 80°F (26.6°C) DB and 67°F (19.4°C) WB in cooling, and 70°F (21°C) DB in heating. - AHRI/ISO certified conditions are 80.6°F (27°C) DB and 66.2°F (19°C) WB in cooling and 68°F (20°C) DB in heating. Table does not reflect fan or pump power corrections for AHRI/ISO conditions. - All performance is based upon the lower voltage of dual voltage rated units. Performance stated is at the rated power supply; performance may vary as the power supply varies from the rated. - Operation below 50°F (10.0°C) EWT is based upon 15% methanol antifreeze solution. Operation below 60°F (15.5°C) EWT requires optional insulated water/refrigerant circuit. See performance correction tables for operating conditions other than those listed above. - See Performance Data Selection Notes for operation in the shaded areas. - Regular Cooling operation with an EWT of less than 50°F (10.0°C) is not recommended unless variable water flow is available. Regular Heating operation with an EWT of more than 90°F (32°C) is not recommended unless variable water flow is available. For quiet operation and long term reliability, it is recommended that systems be designed to avoid continuous operation in the outlined areas. - Performance capacities shown in thousands of Btuh. - The HWG option is available only on the Tranquility SJ. #### 1,500 CFM Rated Airflow | EWT | | WPD | | | Co | oling - E | AT 80/6 | 57°F | | HWG | | WPD | | | HE | ATING | - EAT 70 |)°F | | |-----|-------------|-----|-----|------------|--------|-------------|---------|-------|-------|------|-------------|-----|-----|------|-------------|-------|----------|------|------------| | °F | FLOW
GPM | PSI | FT | TC | sc | Power
kW | HR | EER | LWT | Cap | FLOW
GPM | PSI | FT | нс | Power
kW | HE | СОР | LWT | HWG
Cap | | 20 | | | _ |) n o radi | on Not | Dagamı | | al | | | | | | | | | | | | | | | | | peran | on Noi | Recomi | nenae | u
 | | | 12.00 | 3.3 | 7.6 | 23.4 | 2.62 | 14.5 | 2.6 | 17.5 | 2.8 | | | | | | | | | | | | | 6.00 | 1.1 | 2.4 | 27.9 | 2.60 | 19.0 | 3.1 | 23.4 | 2.9 | | 30 | 3.39 | 0.5 | 1.2 | 45.3 | 31.8 | 1.64 | 50.9 | 27.7 | 60.0 | 1.8 | 9.00 | 2.2 | 5.1 | 28.7 | 2.61 | 19.8 | 3.2 | 25.4 | 2.9 | | | | | | | | | | | | | 12.00 | 3.3 | 7.7 | 29.5 | 2.61 | 20.6 | 3.3 | 26.4 | 2.9 | | | | | | | | | | | | | 6.00 | 0.6 | 1.5 | 35.4 | 2.60 | 26.5 | 4.0 | 35.8 | 3.0 | | 40 | 5.27 | 0.6 | 1.4 | 47.4 | 34.4 | 1.55 | 52.7 | 30.5 | 60.0 | 1.8 | 9.00 | 1.8 | 4.1 | 36.2 | 2.60 | 27.3 | 4.1 | 38.7 | 3.1 | | | | | | | | | | | | | 12.00 | 2.9 | 6.7 | 37.0 | 2.60 | 28.1 | 4.2 | 40.1 | 3.1 | | | 6.00 | 0.7 | 1.7 | 47.7 | 35.6 | 1.71 | 53.5 | 27.9 | 68.6 | 1.8 | 6.00 | 0.4 | 1.0 | 37.6 | 2.61 | 28.7 | 4.2 | 40.0 | 3.2 | | 50 | 9.00 | 1.7 | 3.9 | 47.5 | 35.0 | 1.62 | 53.0 | 29.3 | 62.3 | 1.8 | 9.00 | 1.6 | 3.6 | 38.4 | 2.61 | 29.5 | 4.3 | 43.2 | 3.3 | | | 12.00 | 2.7 | 6.2 | 47.3 | 34.3 | 1.54 | 52.5 | 30.8 | 59.1 | 1.8 | 12.00 | 2.7 | 6.2 | 39.2 | 2.61 | 30.3 | 4.4 | 44.7 | 3.3 | | | 6.00 | 0.6 | 1.3 | 47.1 | 36.4 | 1.96 | 53.8 | 24.1 | 78.7 | 2.3 | 6.00 | 0.1 | 0.2 | 41.7 | 2.62 | 32.7 | 4.7 | 48.6 | 3.4 | | 60 | 9.00 | 1.5 | 3.6 | 46.9 | 35.7 | 1.87 | 53.3 | 25.1 | 72.4 | 1.9 | 9.00 | 1.2 | 2.7 | 42.5 | 2.62 | 33.5 | 4.7 | 52.2 | 3.5 | | | 12.00 | 2.5 | 5.8 | 46.7 | 35.1 | 1.79 | 52.8 | 26.2 | 69.2 | 1.9 | 12.00 | 2.3 | 5.3 | 43.3 | 2.62 | 34.3 | 4.8 | 54.0 | 3.6 | | | 6.00 | 0.5 | 1.1 | 45.6 | 36.1 | 2.26 | 53.3 | 20.2 | 88.6 | 3.2 | 6.00 | 0.1 | 0.2 | 45.6 | 2.65 | 36.6 | 5.0 | 57.3 | 3.7 | | 70 | 9.00 | 1.4 | 3.3 | 45.4 | 35.5 | 2.17 | 52.8 | 20.9 | 82.3 | 2.7 | 9.00 | 0.8 | 1.9 | 46.4 | 2.65 | 37.4 | 5.1 | 61.3 | 3.8 | | | 12.00 | 2.4 | 5.6 | 45.2 | 34.8 | 2.08 | 52.3 | 21.7 | 79.1 | 2.4 | 12.00 | 2.0 | 4.6 | 47.2 | 2.65 | 38.2 | 5.2 | 63.4 | 3.9 | | | 6.00 | 0.4 | 1.0 | 43.4 | 35.2 | 2.60 | 52.3 | 16.7 | 98.3 | 4.2 | 6.00 | 0.1 | 0.2 | 49.6 | 2.69 | 40.4 | 5.4 | 65.9 | 4.0 | | 80 | 9.00 | 1.4 | 3.2 | 43.2 | 34.5 | 2.51 | 51.8 | 17.2 | 92.1 | 3.6 | 9.00 | 0.7 | 1.7 | 50.4 | 2.70 | 41.2 | 5.5 | 70.4 | 4.2 | | | 12.00 | 2.4 | 5.5 | 43.0 | 33.9 | 2.42 | 51.3 | 17.7 | 89.0 | 3.3 | 12.00 | 1.9 | 4.3 | 51.2 | 2.70 | 42.0 | 5.6 | 72.7 | 4.3 | | | 6.00 | 0.4 | 0.9 | 40.8 | 33.8 | 2.97 | 51.0 | 13.8 | 107.9 | 5.4 | | | | | | | | | | | 90 | 9.00 | 1.4 | 3.1 | 40.6 | 33.2 | 2.88 | 50.5 | 14.1 | 101.8 | 4.7 | 4.37 | 0.1 | 0.2 | 53.0 | 2.75 | 43.7 | 5.7 | 70.0 | 4.0 | | | 12.00 | 2.3 | 5.4 | 40.4 | 32.5 | 2.80 | 50.0 | 14.5 | 98.8 | 4.4 | | | | | | | | | | | | 6.00 | 0.4 | 0.8 | 38.2 | 32.3 | 3.37 | 49.7 | 11.3 | 117.6 | 6.8 | | | | | | | | | | | 100 | 9.00 | 1.3 | 3.1 | 38.0 | 31.7 | 3.29 | 49.2 | 11.6 | 111.6 | 6.0 | 2.91 | 0.1 | 0.2 | 53.0 | 2.75 | 43.7 | 5.7 | 70.0 | 4.0 | | | 12.00 | 2.3 | 5.3 | 37.8 | 31.0 | 3.20 | 48.7 | 11.8 | 108.6 | 5.6 | | | | | | | | | | | | 6.00 | 0.3 | 0.7 | 35.8 | 31.0 | 3.79 | 48.7 | 9.4 | 127.4 | 8.5 | | | | | | | | | | | 110 | 9.00 | 1.3 | 3.0 | 35.6 | 30.4 | 3.71 | 48.2 | 9.6 | 121.5 | 7.6 | 2.18 | 0.1 | 0.2 | 53.0 | 2.75 | 43.7 | 5.7 | 70.0 | 4.0 | | | 12.00 | 2.3 | 5.2 | 35.4 | 29.7 | 3.62 | 47.8 | 9.8 | 118.5 | 7.1 | | | | | | | | | | | | 6.00 | 0.2 | 0.5 | 33.9 | 30.2 | 4.23 | 48.3 | 8.0 | 137.4 | 10.3 | | | | | | | | | | | 120 | 9.00 | 1.2 | 2.7 | 33.7 | 29.6 | 4.14 | 47.8 | 8.1 | 131.5 | 9.3 | 1.75 | 0.1 | 0.2 | 53.0 | 2.75 | 43.7 | 5.7 | 70.0 | 4.0 | | | 12.00 | 2.2 | 5.0 | 33.5 | 28.9 | 4.06 | 47.3 | 8.3 | 128.5 | 8.8 | | | | | | | | | | - Interpolation is permissible; extrapolation is not. All entering air conditions are 80°F (26.6°C) DB and 67°F (19.4°C) WB in cooling, and 70°F (21°C) DB in heating. - AHRI/ISO certified conditions are 80.6°F (27°C) DB and 66.2°F (19°C) WB in cooling and 68°F (20°C) DB in heating. Table does not reflect fan or pump power corrections for AHRI/ISO conditions. - All performance is based upon the lower voltage of dual voltage rated units. Performance stated is at the rated power supply; performance may vary as the power supply varies from the rated. - Operation below 50°F (10.0°C) EWT is based upon 15% methanol antifreeze solution. Operation below 60°F (15.5°C) EWT requires optional insulated water/refrigerant circuit. See performance correction tables for operating conditions other than those listed above. - See Performance Data Selection Notes for operation in the shaded areas. - Regular Cooling operation with an EWT of less than 50°F (10.0°C) is not recommended unless variable water flow is available. Regular Heating operation with an EWT of more than 90°F (32°C) is not recommended unless variable water flow is available. For quiet operation and long term reliability, it is recommended that systems be designed to avoid continuous operation in the outlined areas. - Performance capacities shown in thousands of Btuh. - The HWG option is available only on the Tranquility SJ. #### 1,500 CFM Rated Airflow | EWT | | WPD | | | Cod | oling - E | AT 80/6 | 57°F | | HWG | | WPD | | | HE | ATING | - EAT 70 |)°F | | |-----|-------------|-----|------|-------------|--------|-------------|---------|------|-------|------|-------------|-----|------|------|-------------|-------|----------|------|------------| | °F | FLOW
GPM | PSI | FT | TC | sc | Power
kW | HR | EER | LWT | Сар | FLOW
GPM | PSI | FT | нс | Power
kW | HE | СОР | LWT | HWG
Cap | | 20 | | | _ |) n a vark! | an Nak | D | | -d | | | | | | | | | | | | | | | | | peran | on Noi | Recomi | nenae | a | | | 15.00 | 7.1 | 16.3 | 40.0 | 3.84 | 26.9 | 3.1 | 16.2 | 3.5 | | | | | | | | | | | | | 7.50 | 1.7 | 4.0 | 43.2 | 3.88 | 30.0 | 3.3 | 21.6 | 3.7 | | 30 | 4.29 | 0.9 | 2.0 | 54.8 | 38.4 | 2.83 | 64.4 | 19.4 | 60.0 | 2.8 | 11.25 | 3.6 | 8.4 | 44.5 | 3.89 | 31.2 | 3.3 | 24.2 | 3.8 | | | | | | | | | | | | | 15.00 | 5.5 | 12.7 | 45.8 | 3.91 | 32.4 | 3.4 | 25.5 | 3.8 | | | | | | | | | | | | | 7.50 | 0.3 | 0.7 | 51.6 | 4.03 | 37.9 | 3.8 | 34.5 | 4.0 | | 40 | 7.42 | 1.3 | 3.1 | 64.2 | 44.8 | 2.93 | 74.2 | 21.9 | 60.0 | 2.8 | 11.25 | 2.2 | 5.1 | 52.9 | 4.04 | 39.1 | 3.8 | 37.7 | 4.1 | | | | | | | | | | | | | 15.00 | 4.1 | 9.4 | 54.2 | 4.06 | 40.3 | 3.9 | 39.4 | 4.2 | | | 7.50 | 1.2 | 2.7 | 67.3 | 48.0 | 3.27 | 78.5 | 20.6 | 71.8 | 2.8 | 7.50 | 0.1 | 0.2 | 54.3 | 4.08 | 40.4 | 3.9 | 38.8 | 4.3 | | 50 | 11.25 | 2.8 | 6.4 | 66.3 | 46.8 | 3.12 | 76.9 | 21.2 | 64.3 | 2.8 | 11.25 | 1.9 | 4.4 | 55.6 | 4.10 | 41.6 | 4.0 | 42.3 | 4.5 | | | 15.00 | 4.3 | 10.0 | 65.2 | 45.6 | 2.97 | 75.4 | 21.9 | 60.5 | 2.8 | 15.00 | 3.8 | 8.7 | 56.9 | 4.12 | 42.9 | 4.1 | 44.0 | 4.6 | | | 7.50 | 0.9 | 2.2 | 68.7 | 50.1 | 3.62 | 81.0 | 19.0 | 82.5 | 3.4 | 7.50 | 0.1 | 0.2 | 59.6 | 4.20 | 45.2 | 4.2 | 47.4 | 4.7 | | 60 | 11.25 | 2.5 | 5.8 | 67.6 | 48.8 | 3.47 | 79.5 | 19.5 | 74.7 | 2.9 | 11.25 | 1.6 | 3.6 | 60.8 | 4.22 | 46.4 | 4.2 | 51.4 | 4.9 | | | 15.00 | 4.1 | 9.5 | 66.6 | 47.6 | 3.33 | 78.0 | 20.0 | 70.8 | 2.7 | 15.00 | 3.4 | 7.9 | 62.1 | 4.23 | 47.7 | 4.3 | 53.4 | 5.0 | | | 7.50 | 0.8 | 1.9 | 67.2 | 50.0 | 3.96 | 80.6 | 17.0 | 92.5 | 4.3 | 7.50 | 0.1 | 0.2 | 64.5 | 4.32 | 49.7 | 4.4 | 56.1 | 5.1 | | 70 | 11.25 | 2.4 | 5.6 | 66.1 | 48.8 | 3.81 | 79.1 | 17.4 | 84.7 | 3.7 | 11.25 | 1.4 | 3.3 | 65.7 | 4.33 | 51.0 | 4.4 | 60.5 | 5.4 | | | 15.00 | 4.0 | 9.2 | 65.1 | 47.5 | 3.66 | 77.6 | 17.8 | 80.8 | 3.4 | 15.00 | 3.3 | 7.6 | 67.0 | 4.35 | 52.2 | 4.5 | 62.7 | 5.5 | | | 7.50 | 0.8 | 1.9 | 63.8 | 48.5 | 4.30 | 78.5 | 14.8 | 101.9 | 5.4 | 7.50 | 0.1 | 0.2 | 69.0 | 4.42 | 53.9 | 4.6 | 64.9 | 5.7 | | 80 | 11.25 | 2.4 | 5.5
| 62.8 | 47.3 | 4.15 | 76.9 | 15.1 | 94.3 | 4.7 | 11.25 | 1.4 | 3.1 | 70.3 | 4.44 | 55.1 | 4.6 | 69.7 | 5.7 | | | 15.00 | 4.0 | 9.2 | 61.7 | 46.1 | 4.01 | 75.4 | 15.4 | 90.5 | 4.3 | 15.00 | 3.2 | 7.5 | 71.6 | 4.46 | 56.4 | 4.7 | 72.1 | 5.7 | | | 7.50 | 0.8 | 1.8 | 59.7 | 46.4 | 4.69 | 75.7 | 12.7 | 111.3 | 6.7 | | | | | | | | | | | 90 | 11.25 | 2.4 | 5.5 | 58.6 | 45.2 | 4.54 | 74.1 | 12.9 | 103.9 | 5.8 | 5.64 | 0.1 | 0.2 | 71.8 | 4.49 | 56.4 | 4.7 | 70.0 | 5.7 | | | 15.00 | 4.0 | 9.1 | 57.6 | 43.9 | 4.39 | 72.6 | 13.1 | 100.2 | 5.4 | | | | | | | | | | | | 7.50 | 0.7 | 1.7 | 55.8 | 44.3 | 5.14 | 73.4 | 10.9 | 120.7 | 8.1 | | | | | | | | | | | 100 | 11.25 | 2.3 | 5.4 | 54.8 | 43.1 | 4.99 | 71.8 | 11.0 | 113.5 | 7.2 | 3.76 | 0.1 | 0.2 | 71.8 | 4.49 | 56.4 | 4.7 | 70.0 | 5.7 | | | 15.00 | 3.9 | 9.0 | 53.8 | 41.9 | 4.85 | 70.3 | 11.1 | 109.9 | 6.7 | | | | | | | | | | | | 7.50 | 0.6 | 1.4 | 53.4 | 43.1 | 5.70 | 72.8 | 9.4 | 130.7 | 9.7 | | | | | | | | | | | 110 | 11.25 | 2.2 | 5.1 | 52.3 | 41.9 | 5.55 | 71.2 | 9.4 | 123.5 | 8.7 | 2.82 | 0.1 | 0.2 | 71.8 | 4.49 | 56.4 | 4.7 | 70.0 | 5.7 | | | 15.00 | 3.8 | 8.8 | 51.3 | 40.6 | 5.40 | 69.7 | 9.5 | 119.9 | 8.2 | | | | | | | | | | | | 7.50 | 0.4 | 0.9 | 53.3 | 43.4 | 6.38 | 75.1 | 8.4 | 141.6 | 11.5 | | | | | | | | | | | 120 | 11.25 | 2.0 | 4.5 | 52.2 | 42.1 | 6.23 | 73.5 | 8.4 | 134.1 | 10.4 | 2.26 | 0.1 | 0.2 | 71.8 | 4.49 | 56.4 | 4.7 | 70.0 | 5.7 | | | 15.00 | 3.5 | 8.2 | 51.2 | 40.9 | 6.09 | 72.0 | 8.4 | 130.4 | 9.9 | | | | | | | | | | - Interpolation is permissible; extrapolation is not. All entering air conditions are 80°F (26.6°C) DB and 67°F (19.4°C) WB in cooling, and 70°F (21°C) DB in heating. - AHRI/ISO certified conditions are 80.6°F (27°C) DB and 66.2°F (19°C) WB in cooling and 68°F (20°C) DB in heating. - Table does not reflect fan or pump power corrections for AHRI/ISO conditions. - All performance is based upon the lower voltage of dual voltage rated units. Performance stated is at the rated power supply; performance may vary as the power supply varies from the rated. - Operation below 50°F (10.0°C) EWT is based upon 15% methanol antifreeze solution. - Operation below 60°F (15.5°C) EWT requires optional insulated water/refrigerant circuit. - See performance correction tables for operating conditions other than those listed above. See Performance Data Selection Notes for operation in the shaded areas. - Regular Cooling operation with an EWT of less than 50°F (10.0°C) is not recommended unless variable water flow is available. Regular Heating operation with an EWT of more than 90°F (32°C) is not recommended unless variable water flow is available. For quiet operation and long term reliability, it is recommended that systems be designed to avoid continuous operation in the outlined areas. - Performance capacities shown in thousands of Btuh. - The HWG option is available only on the Tranquility SJ. #### Models: SJ/SP/SA/SK 024-060 ### Blower Performance: CV EC Standard Unit #### **CV EC MOTOR ADVANTAGE** A major benefit of the CV EC motor over other blower motor types is its ability to adjust airflow remotely through the iGate 2 web portal/mobile app or directly at the unit with a communicating diagnostic service tool. Airflow levels can be adjusted in increments of 25 CFM from the unit's minimum and maximum CFM range (see the Blower Performance: CV EC Blower Motor Standard Unit table for details). #### **Blower Performance: CV EC Blower Motor Standard Unit** | | Max ESP | Fan | Airflow | Coolin | g Mode | Dehum | id Mode | Heating | g Mode | Fan | Aux/ | |-------|----------|---------------|---------|---------|---------|---------|---------|---------|---------|--|---------------| | Model | (in. wg) | Motor
(hp) | Range | Stage 2 | Stage 1 | Stage 2 | Stage 1 | Stage 2 | Stage 1 | Fan Only Mode 300 350 850 450 525 1,250 600 700 1,700 750 875 2,100 | Emerg
Mode | | | | | Minimum | 600 | 450 | 600 | 450 | 600 | 450 | 300 | 700 | | SA024 | 1 | 1/2 | Default | 750 | 575 | 650 | 500 | 750 | 575 | 350 | 850 | | | | | Maximum | 850 | 650 | 800 | 600 | 850 | 850 | 850 | 1,000 | | | | | Minimum | 900 | 600 | 900 | 600 | 900 | 600 | 450 | 1,350 | | SA036 | 0.9 | 1/2 | Default | 1,125 | 750 | 975 | 650 | 1,125 | 750 | 525 | 1,350 | | | | | Maximum | 1,250 | 950 | 1,200 | 800 | 1,250 | 1,250 | 1,250 | 1,500 | | | | | Minimum | 1,200 | 900 | 1,200 | 900 | 1,200 | 900 | 600 | 1,350 | | SA048 | 1 | 1 | Default | 1,500 | 1,125 | 1,300 | 975 | 1,500 | 1,125 | 700 | 1,500 | | | | | Maximum | 1,700 | 1,300 | 1,600 | 1,200 | 1,700 | 1,700 | 1,700 | 2,000 | | | | | Minimum | 1,500 | 1,200 | 1,500 | 1,200 | 1,500 | 1,200 | 750 | 1,500 | | SA060 | 0.7 | 1 | Default | 1,875 | 1,500 | 1,625 | 1,300 | 1,875 | 1,500 | 875 | 1,875 | | | | | Maximum | 2,100 | 1,700 | 2,000 | 1,600 | 2,100 | 2,100 | 2,100 | 2,300 | ### **Electrical Data** #### **Table 1: SJ Standard with Modulating Valve** | AAI - I | Voltage | Doube of Worldon | Voltage | С | ompre | essor A | | Total | Min | Max | |---------|---------|------------------|---------|------|-------|---------|-----|-------------|-------------|---------------| | Model | Code | Rated Voltage | Min/Max | мсс | RLA | LRA | Qty | Unit
FLA | Circ
Amp | Fuse/
HACR | | SJ024 | J | 208/230-1-60 | 187/252 | 16.0 | 10.3 | 62.0 | 1 | 10.3 | 12.9 | 20 | | SJ036 | J | 208/230-1-60 | 187/252 | 22.7 | 14.6 | 76.0 | 1 | 14.6 | 18.3 | 30 | | SJ048 | J | 208/230-1-60 | 187/252 | 28.6 | 18.3 | 138.0 | 1 | 18.3 | 22.9 | 40 | | \$1060 | J | 208/230-1-60 | 187/252 | 34.8 | 22.3 | 149.0 | 1 | 22.3 | 27.9 | 50 | #### Table 2: SJ with HWG Pump | AAI - I | Voltage | Doube of Worldon | Voltage | С | ompre | ssor A | | HWG | Total | Min | Max | |---------|---------|------------------|---------|------|-------|--------|-----|-------------|-------------|-------------|---------------| | Model | Code | Rated Voltage | Min/Max | MCC | RLA | LRA | Qty | Pump
FLA | Unit
FLA | Circ
Amp | Fuse/
HACR | | SJ024 | J | 208/230-1-60 | 187/252 | 16.0 | 10.3 | 62.0 | 1 | 0.28 | 10.6 | 13.2 | 20 | | SJ036 | J | 208/230-1-60 | 187/252 | 22.7 | 14.6 | 76.0 | 1 | 0.28 | 14.9 | 18.5 | 30 | | SJ048 | J | 208/230-1-60 | 187/252 | 28.6 | 18.3 | 138.0 | 1 | 0.28 | 18.6 | 23.2 | 40 | | SJ060 | J | 208/230-1-60 | 187/252 | 34.8 | 22.3 | 149.0 | 1 | 0.28 | 22.6 | 28.2 | 50 | #### **Table 3: SJ with Standard Head Flow Controller** | AA a al a l | Voltage | Date d Vellage | Voltage | С | ompre | ssor A | | GEO | Total | Min | Max | |-------------|---------|----------------|---------|------|-------|--------|-----|-------------|-------------|-------------|---------------| | Model | Code | Rated Voltage | Min/Max | мсс | RLA | LRA | Qty | Pump
FLA | Unit
FLA | Circ
Amp | Fuse/
HACR | | SJ024 | J | 208/230-1-60 | 187/252 | 16.0 | 10.3 | 62.0 | 1 | 0.64 | 10.9 | 13.5 | 20 | | SJ036 | J | 208/230-1-60 | 187/252 | 22.7 | 14.6 | 76.0 | 1 | 0.64 | 15.2 | 18.9 | 30 | | SJ048 | J | 208/230-1-60 | 187/252 | 28.6 | 18.3 | 138.0 | 1 | 0.64 | 18.9 | 23.5 | 40 | | SJ060 | J | 208/230-1-60 | 187/252 | 34.8 | 22.3 | 149.0 | 1 | 0.64 | 22.9 | 28.5 | 50 | #### **Table 4: SJ with High Head Flow Controller** | | Voltage | | Voltage | С | ompre | ssor A | | UPMXL | | Min | Max | |-------|---------|---------------|---------|------|-------|--------|-----|-------------|-------------|-------------|---------------| | Model | Code | Rated Voltage | Min/Max | мсс | RLA | LRA | Qty | Pump
FLA | Unit
FLA | Circ
Amp | Fuse/
HACR | | SJ024 | J | 208/230-1-60 | 187/252 | 16.0 | 10.3 | 62.0 | 1 | 1.44 | 11.7 | 14.3 | 20 | | SJ036 | J | 208/230-1-60 | 187/252 | 22.7 | 14.6 | 76.0 | 1 | 1.44 | 16.0 | 19.7 | 30 | | SJ048 | J | 208/230-1-60 | 187/252 | 28.6 | 18.3 | 138.0 | 1 | 1.44 | 19.7 | 24.3 | 40 | | SJ060 | J | 208/230-1-60 | 187/252 | 34.8 | 22.3 | 149.0 | 1 | 1.44 | 23.7 | 29.3 | 50 | #### Table 5: SJ with Standard Head Flow Controller and HWG Pump | AAI - I | Voltage | Doube of Markey | Voltage | С | ompre | ssor A | | GEO | HWG | Total | Min | Max | |---------|---------|-----------------|---------|------|-------|--------|-----|------|-------------|-------------|-------------|---------------| | Model | Code | Rated Voltage | Min/Max | мсс | RLA | LRA | Qty | | Pump
FLA | Unit
FLA | Circ
Amp | Fuse/
HACR | | SJ024 | J | 208/230-1-60 | 187/252 | 16.0 | 10.3 | 62.0 | 1 | 0.64 | 0.28 | 11.2 | 13.8 | 20 | | SJ036 | J | 208/230-1-60 | 187/252 | 22.7 | 14.6 | 76.0 | 1 | 0.64 | 0.28 | 15.5 | 19.2 | 30 | | SJ048 | J | 208/230-1-60 | 187/252 | 28.6 | 18.3 | 138.0 | 1 | 0.64 | 0.28 | 19.2 | 23.8 | 40 | | SJ060 | J | 208/230-1-60 | 187/252 | 34.8 | 22.3 | 149.0 | 1 | 0.64 | 0.28 | 23.2 | 28.8 | 50 | ### **Electrical Data** #### Table 6: SJ with High Head Flow Controller and HWG Pump | | Voltage | | Voltage | С | ompre | ssor A | | UPMXL | | Total | Min | Max | |-------|---------|---------------|---------|------|-------|--------|-----|-------------|-------------|-------------|------|---------------| | Model | Code | Rated Voltage | Min/Max | мсс | RLA | LRA | Qty | Pump
FLA | Pump
FLA | Unit
FLA | Circ | Fuse/
HACR | | SJ024 | J | 208/230-1-60 | 187/252 | 16.0 | 10.3 | 62.0 | 1 | 1.44 | 0.28 | 12.0 | 14.6 | 20 | | SJ036 | J | 208/230-1-60 | 187/252 | 22.7 | 14.6 | 76.0 | 1 | 1.44 | 0.28 | 16.3 | 20.0 | 30 | | SJ048 | J | 208/230-1-60 | 187/252 | 28.6 | 18.3 | 138.0 | 1 | 1.44 | 0.28 | 20.0 | 24.6 | 40 | | SJ060 | J | 208/230-1-60 | 187/252 | 34.8 | 22.3 | 149.0 | 1 | 1.44 | 0.28 | 24.0 | 29.6 | 50 | #### **Table 7: SP Standard** | AAI - I | Voltage | Doube of Worlder | Voltage | С | ompre | ssor A | | Total | Min | Max | |---------|---------|------------------|---------|------|-------|--------|-----|-------------|-------------|---------------| | Model | Code | Rated Voltage | Min/Max | MCC | RLA | LRA | Qty | Unit
FLA | Circ
Amp | Fuse/
HACR | | SP024 | G | 208/230-1-60 | 187/252 | 16.0 | 10.3
| 62.0 | 1 | 10.3 | 12.9 | 20 | | SP036 | G | 208/230-1-60 | 187/252 | 22.7 | 14.6 | 76.0 | 1 | 14.6 | 18.3 | 30 | | SP048 | G | 208/230-1-60 | 187/252 | 28.6 | 18.3 | 138.0 | 1 | 18.3 | 22.9 | 40 | | SP060 | G | 208/230-1-60 | 187/252 | 34.8 | 22.3 | 149.0 | 1 | 22.3 | 27.9 | 50 | #### Table 8: SP with Standard Head Flow Controller | AAI - I | Voltage | Doube of Worldon | Voltage | С | ompre | ssor A | | GEO | Total | Min | Max | |---------|---------|------------------|---------|------|-------|--------|-----|-------------|-------------|-------------|---------------| | Model | Code | Rated Voltage | Min/Max | мсс | RLA | LRA | Qty | Pump
FLA | Unit
FLA | Circ
Amp | Fuse/
HACR | | SP024 | G | 208/230-1-60 | 187/252 | 16.0 | 10.3 | 62.0 | 1 | 0.64 | 10.9 | 13.5 | 20 | | SP036 | G | 208/230-1-60 | 187/252 | 22.7 | 14.6 | 76.0 | 1 | 0.64 | 15.2 | 18.9 | 30 | | SP048 | G | 208/230-1-60 | 187/252 | 28.6 | 18.3 | 138.0 | 1 | 0.64 | 18.9 | 23.5 | 40 | | SP060 | G | 208/230-1-60 | 187/252 | 34.8 | 22.3 | 149.0 | 1 | 0.64 | 22.9 | 28.5 | 50 | #### **Table 9: SP with High Head Flow Controller** | | Voltage | | Voltage | C | ompre | ssor A | | UPMXL | Total | Min | Max | |-------|---------|---------------|---------|------|-------|--------|-----|-------------|-------------|-------------|---------------| | Model | Code | Rated Voltage | Min/Max | мсс | RLA | LRA | Qty | Pump
FLA | Unit
FLA | Circ
Amp | Fuse/
HACR | | SP024 | G | 208/230-1-60 | 187/252 | 16.0 | 10.3 | 62.0 | 1 | 1.44 | 11.7 | 14.3 | 30 | | SP036 | G | 208/230-1-60 | 187/252 | 22.7 | 14.6 | 76.0 | 1 | 1.44 | 16.0 | 19.7 | 30 | | SP048 | G | 208/230-1-60 | 187/252 | 28.6 | 18.3 | 138.0 | 1 | 1.44 | 19.7 | 24.3 | 40 | | SP060 | G | 208/230-1-60 | 187/252 | 34.8 | 22.3 | 149.0 | 1 | 1.44 | 23.7 | 29.3 | 50 | #### Table 10: SA Standard | Model | Voltage
Code | Rated
Voltage | Voltage
Min/Max | Fan
Motor
FLA | Total
Unit
FLA | Min
Circ
Amp | Max
Fuse/
HACR | |-------|-----------------|------------------|--------------------|---------------------|----------------------|--------------------|----------------------| | SA024 | J | 208/230-1-60 | 187/252 | 4.20 | 4.20 | 5.3 | 15 | | SA036 | J | 208/230-1-60 | 187/252 | 5.90 | 5.90 | 7.4 | 15 | | SA048 | J | 208/230-1-60 | 187/252 | 5.90 | 5.90 | 7.4 | 15 | | SA060 | J | 208/230-1-60 | 187/252 | 7.50 | 7.50 | 9.4 | 15 | # Part Load Performance: Correction Tables #### **Cooling Corrections** | Entering | Total | S | ensible (| Cooling | Capacity | / Multipli | ier - Ente | ring DB | °F | Pawar | Heat of
Rejection | | |----------|----------|-------|-------------|---------|----------|------------|------------|---------|-------|-------|----------------------|--| | Air WB°F | Capacity | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100 | Power | | | | 45 | 0.876 | 1.302 | 1.389 | * | * | * | * | * | * | 0.981 | 0.895 | | | 50 | 0.883 | 1.099 | 1.099 1.241 | | * | * | * | * | * | 0.985 | 0.901 | | | 55 | 0.903 | 0.871 | 0.871 1.060 | | * | * | * | * | * | 0.989 | 0.918 | | | 60 | 0.935 | 0.617 | 0.617 0.844 | | 1.319 | * | * | * | * | 0.993 | 0.945 | | | 65 | 0.979 | | 0.595 | 0.849 | 1.096 | 1.342 | * | * | * | 0.998 | 0.982 | | | 67 | 1.000 | | 0.486 | 0.747 | 1.000 | 1.245 | 1.481 | * | * | 1.000 | 1.000 | | | 70 | 1.035 | | | 0.583 | 0.842 | 1.090 | 1.327 | 1.552 | * | 1.003 | 1.030 | | | 75 | 1.105 | | | | 0.552 | 0.811 | 1.057 | 1.290 | 1.510 | 1.008 | 1.086 | | ^{• * =} Sensible capacity equals total capacity. #### **Entering Air Heating Correction** | Entering
Air DB°F | Heating
Capacity | Power | Heat of
Extraction | | | |----------------------|---------------------|-------|-----------------------|--|--| | 40 | 1.084 | 0.732 | 1.161 | | | | 45 | 1.073 | 0.764 | 1.14 | | | | 50 | 1.060 | 0.802 | 1.117 | | | | 55 | 1.046 | 0.846 | 1.090 | | | | 60 | 1.031 | 0.893 | 1.061 | | | | 65 | 1.016 | 0.945 | 1.031 | | | | 68 | 1.006 | 0.978 | 1.013 | | | | 70 | 1.000 | 1.000 | 1.000 | | | | 75 | 0.995 | 1.058 | 0.968 | | | | 80 | 0.968 | 1.117 | 0.936 | | | AHRI/ISO/ASHRAE 13256-1 uses entering air conditions of Cooling - 80.6°F DB/66.2°F WB, 1 and Heating - 68°F DB/59°F WB entering air temperature #### **Airflow Correction** | Airflow | | Нес | ating | | Cooling | | | | | | | |-----------------|---------|-------|-----------------------|-----------|----------|-------|-------|-------------------|--|--|--| | % of
Nominal | Htg Cap | Power | Heat of
Extraction | Total Cap | Sens Cap | S/T | Power | Heat of Rejection | | | | | 60.00 | 0.946 | 1.153 | 0.896 | 0.925 | 0.788 | 0.852 | 0.913 | 0.922 | | | | | 68.75 | 0.959 | 1.107 | 0.924 | 0.946 | 0.829 | 0.876 | 0.926 | 0.942 | | | | | 75.00 | 0.969 | 1.078 | 0.942 | 0.96 | 0.861 | 0.897 | 0.937 | 0.955 | | | | | 81.25 | 0.977 | 1.053 | 0.959 | 0.972 | 0.895 | 0.921 | 0.950 | 0.968 | | | | | 87.50 | 0.985 | 1.032 | 0.974 | 0.983 | 0.930 | 0.946 | 0.965 | 0.979 | | | | | 93.75 | 0.993 | 1.014 | 0.988 | 0.992 | 0.965 | 0.973 | 0.982 | 0.990 | | | | | 100.00 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | | | | | 106.25 | 1.006 | 0.989 | 1.011 | 1.007 | 1.033 | 1.027 | 1.020 | 1.009 | | | | | 112.50 | 1.012 | 0.982 | 1.019 | 1.012 | 1.064 | 1.052 | 1.042 | 1.018 | | | | | 118.75 | 1.018 | 0.979 | 1.027 | 1.016 | 1.092 | 1.075 | 1.066 | 1.025 | | | | | 125.00 | 1.022 | 0.977 | 1.033 | 1.018 | 1.116 | 1.096 | 1.091 | 1.032 | | | | | 130.00 | 1.026 | 0.975 | 1.038 | 1.019 | 1.132 | 1.110 | 1.112 | 1.037 | | | | # **Full Load Performance: Correction Tables** #### **Cooling Corrections** | Entering | Total | S | ensible (| Cooling | Capacity | / Multipli | ier - Ente | ring DB o | °F | Pawar | Heat of | | |----------|----------|-------|-----------|---------|----------|------------|------------|-----------|-------|-------|-----------|--| | Air WB°F | Capacity | 65 | 70 | 70 75 | | 85 | 90 | 95 | 100 | Power | Rejection | | | 45 | 0.832 | 1.461 | 1.603 | * | * | * | * | * | * | 0.946 | 0.853 | | | 50 | 0.850 | 1.174 | 1.357 | * | * | * | * | * | * | 0.953 | 0.870 | | | 55 | 0.880 | 0.902 | 1.115 | 1.331 | * | * | * | * | * | 0.964 | 0.896 | | | 60 | 0.922 | | 0.875 | 1.103 | 1.329 | * | * | * | * | 0.977 | 0.932 | | | 65 | 0.975 | | 0.639 | 0.869 | 1.096 | 1.320 | * | * | * | 0.993 | 0.979 | | | 67 | 1.000 | | 0.545 | 0.774 | 1.000 | 1.223 | 1.444 | * | * | 1.000 | 1.000 | | | 70 | 1.040 | | | 0.630 | 0.853 | 1.075 | 1.297 | 1.517 | * | 1.010 | 1.036 | | | 75 | 1.117 | | | | 0.601 | 0.821 | 1.046 | 1.275 | 1.510 | 1.032 | 1.100 | | ^{• * =} Sensible capacity equals total capacity. #### **Entering Air Heating Correction** | Entering
Air DB°F | Heating
Capacity | Power | Heat of
Extraction | | | |----------------------|---------------------|-------|-----------------------|--|--| | 40 | 1.052 | 0.779 | 1.12 | | | | 45 | 1.043 | 0.808 | 1.102 | | | | 50 | 1.035 | 0.841 | 1.084 | | | | 55 | 1.027 | 0.877 | 1.065 | | | | 60 | 1.019 | 0.915 | 1.045 | | | | 65 | 1.010 | 0.957 | 1.023 | | | | 68 | 1.004 | 0.982 | 1.010 | | | | 70 | 1.000 | 1.000 | 1.000 | | | | 75 | 0.989 | 1.045 | 0.974 | | | | 80 | 0.976 | 1.093 | 0.946 | | | AHRI/ISO/ASHRAE 13256-1 uses entering air conditions of Cooling - 80.6°F DB/66.2°F WB, 1 and Heating - 68°F DB/59°F WB entering air temperature #### **Airflow Correction** | Airflow | | Hed | ating | | Cooling | | | | | | | |-----------------|---------|-------|--------------------|-----------|----------|-------|-------|-------------------|--|--|--| | % of
Nominal | Htg Cap | Power | Heat of Extraction | Total Cap | Sens Cap | S/T | Power | Heat of Rejection | | | | | 60.00 | 0.946 | 1.153 | 0.896 | 0.925 | 0.788 | 0.852 | 0.913 | 0.922 | | | | | 68.75 | 0.959 | 1.107 | 0.924 | 0.946 | 0.829 | 0.876 | 0.926 | 0.942 | | | | | 75.00 | 0.969 | 1.078 | 0.942 | 0.96 | 0.861 | 0.897 | 0.937 | 0.955 | | | | | 81.25 | 0.977 | 1.053 | 0.959 | 0.972 | 0.895 | 0.921 | 0.950 | 0.968 | | | | | 87.50 | 0.985 | 1.032 | 0.974 | 0.983 | 0.930 | 0.946 | 0.965 | 0.979 | | | | | 93.75 | 0.993 | 1.014 | 0.988 | 0.992 | 0.965 | 0.973 | 0.982 | 0.990 | | | | | 100.00 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | | | | | 106.25 | 1.006 | 0.989 | 1.011 | 1.007 | 1.033 | 1.027 | 1.020 | 1.009 | | | | | 112.50 | 1.012 | 0.982 | 1.019 | 1.012 | 1.064 | 1.052 | 1.042 | 1.018 | | | | | 118.75 | 1.018 | 0.979 | 1.027 | 1.016 | 1.092 | 1.075 | 1.066 | 1.025 | | | | | 125.00 | 1.022 | 0.977 | 1.033 | 1.018 | 1.116 | 1.096 | 1.091 | 1.032 | | | | | 130.00 | 1.026 | 0.975 | 1.038 | 1.019 | 1.132 | 1.110 | 1.112 | 1.037 | | | | # High Head and Standard Variable Pump Performance #### **Standard Head Variable Pump Performance** #### **High Head Variable Pump Performance** # **Antifreeze Correction Table** | | | | Cooling | | Hea | | WPD | | |------------------|-----------------|--------------|-------------|-------|------------|------------|----------|--| | Antifreeze Type | Antifreeze
% | | EWT 90°F | | EWT | Corr. Fct. | | | | | /6 | Total
Cap | Sens
Cap | Power | Htg
Cap | Power | EWT 30°F | | | Water | 0 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | | | | 5 | 0.995 | 0.995 | 1.003 | 0.989 | 0.997 | 1.070 | | | Propylene Glycol | 15 | 0.986 | 0.986 | 1.009 | 0.968 | 0.990 | 1.210 | | | | 25 | 0.978 | 0.978 | 1.014 | 0.947 | 0.983 | 1.360 | | | | 5 | 0.997 | 0.997 | 1.002 | 0.989 | 0.997 | 1.070 | | | Methanol | 15 | 0.990 | 0.990 | 1.007 | 0.968 | 0.990 | 1.160 | | | | 25 | 0.982 | 0.982 | 1.012 | 0.949 | 0.984 | 1.220 | | | | 5 | 0.998 | 0.998 | 1.002 | 0.981 | 0.994 | 1.140 | | | Ethanol | 15 | 0.994 | 0.994 | 1.005 | 0.944 | 0.983 | 1.300 | | | | 25 | 0.986 | 0.986 | 1.009 | 0.917 | 0.974 | 1.360 | | | | 5 | 0.998 | 0.998 | 1.002 | 0.993 | 0.998 | 1.040 | | | Ethylene Glycol | 15 | 0.994 | 0.994 | 1.004 | 0.980 | 0.994 | 1.120 | | | | 25 | 0.988 | 0.988 | 1.008 | 0.966 | 0.990 | 1.200 | | # **Physical Data** #### Tranquility SJ/SP Physical Data | Model Size | 024 | 036 | 048 | 060
 |--|----------------|----------------|----------------|----------------| | Compressor (1 each) | | Sc | roll | | | Factory Charge R-454B - (oz.) ¹ | 60 | 96 | 100 | 136 | | Refrigerant Leak Detection System | R ² | R ² | R ² | R ² | | Number of Sensors | 1 | 1 | 1 | 1 | | Water Connection Size | | | | | | Swivel (NPSH) (SJ) | 1" | 1" | 1" | 1" | | Swivel (NPSH) (SP) ⁴ | 3/4" | 3/4'' | 1" | 1" | | SJ Weight | | | | | | Weight - Operating lbs. | 233 | 251 | 280 | 295 | | Weight - Packaged lbs. | 248 | 266 | 295 | 310 | | SP Weight | | | | | | Weight - Operating lbs. | 245 | 263 | 309 | 337 | | Weight - Packaged lbs. | 260 | 278 | 324 | 352 | | Hot Water Generator ³ | | | | | | Swivel (SJ) | 1 | 1 | 1 | 1 | - All dimensions displayed above are in inches unless otherwise marked. All units have TXV expansion device - NPSH = National Pipe Straight Hose - O = Optional, R = Required - The factory charge is sized for a nominal 25 ft (7.62 m) line set. See the IOM for more information. - RDS is required on all Tranquility SJ sizes - Tranquility SJ only SP water connections are made with factory-installed hose kits. The field connection is 3/4-NPSH swivel for sizes 024-036 and 1-inch NPSH swivel for sizes 048-060. #### **Tranquility SA Physical Data** | Model | 024 | 036 | 048 | 060 | |-----------------------------------|----------------|----------------|----------------|----------------| | Water Connection Size | | | | | | Liquid I.D. (in.) | 3/8 | 3/8 | 3/8 | 3/8 | | Suction I.D. (in.) | 3/4 | 7/8 | 7/8 | 7/8 | | Refrigerant Leak Detection System | R ¹ | R ¹ | R ¹ | R ¹ | | Number of Sensors | 1 | 1 | 1 | 1 | | Fan Motor - CV EC | | | | | | Filter Standard 1" Throwaway | 16 x 20 | 20 : | × 20 | 20 x 24 | | Weight - Operating lbs. | 80 | 173 | 3 180 19 | | | Weight - Packaged lbs. | 96 | 198 | 218 | 236 | ^{1.} The RDS is factory installed on all Tranquility SA sizes. # **Physical Data** #### **Tranquility SK Physical Data** | Model Size | 024 | 036 | 048 | 060 | |-----------------------------------|----------------|----------------|----------------|--------| | Refrigerant Circuit | | | | | | Liquid I.D. (in.) | 3/8 | 3/8 | 3/8 | 3/8 | | Suction I.D. (in.) | 3/4 | 7/8 | 7/8 | 7/8 | | Refrigerant Leak Detection System | R ¹ | R ¹ | R ¹ | R1 | | Number of Sensors | 1 | 1 | 1 | 1 | | Cased Coil Dimensions | | | | | | A - Width - in. | 17 1/2 | 21 | 21 | 24 1/2 | | B - Coil Height (in.) | 14 1/2 | 25 7/8 | 25 7/8 | 30 | | C- Height (in.) | 20 | 28 | 28 | 32 | | Weight | | | | | | Coil Weight lbs. | 43 | 71 | 71 | 100 | | Shipping Weight lbs. | 48 | 78 | 78 | 110 | ^{1.} The RDS is factory installed on all Tranquility SK sizes. #### **Unit Maximum Water Working Pressure** | Options | Max Pressure PSIG [kPa] | | | | | | |---------------------------|-------------------------|--|--|--|--|--| | Base Unit | 300 [2,068] | | | | | | | Internal Modulating Valve | 300 [2,068] | | | | | | # Tranquility SJ Dimensional Data | | | Ove | rall Cab | inet | | Water Connections | | | | | | | igerant | Connecti | on | Electrical Knockouts | | | | |------|-----|------------|-------------|------------|--------------------------|------------------------|-------------------|-------------------|-------------------|----------------|-----------------|--------------|-------------|--------------|-------------|----------------------|------|------|-----| | Мо | del | A
Width | B
Height | C
Depth | 1
Water
In/
Out | 2
HWG
In/
Out | D1
Water
In | D2
Water
In | E
Water
Out | F
HWG
In | G
HWG
Out | 3
Suction | 4
Liquid | H
Suction | I
Liquid | J | K | L | М | | | | | | | Swi | vel | | | | | | | | | | | | | | | 024 | in | 25.4 | 26.3 | 30.6 | 1" | 1" | 2.0 | 3.8 | 8.4 | 15.4 | 18.7 | 7/8" | 3/8" | 23.6 | 21.8 | 4.4 | 5.9 | 7.4 | 1.7 | | 024 | cm | 64.5 | 66.8 | 165.1 | 1" | 1" | 5.1 | 9.7 | 21.3 | 39.1 | 47.5 | 7/8" | 3/8" | 59.9 | 55.4 | 11.2 | 15.0 | 18.8 | 4.3 | | 036 | in | 25.4 | 26.3 | 30.6 | 1" | 1" | 2.0 | 3.8 | 8.4 | 15.4 | 18.7 | 7/8" | 3/8" | 23.6 | 21.8 | 4.4 | 5.9 | 7.4 | 1.7 | | 036 | cm | 64.5 | 66.8 | 165.1 | 1" | 1" | 5.1 | 9.7 | 21.3 | 39.1 | 47.5 | 7/8" | 3/8" | 59.9 | 55.4 | 11.2 | 15.0 | 18.8 | 4.3 | | 048 | in | 25.4 | 26.3 | 30.6 | 1" | 1" | 2.0 | 3.8 | 8.4 | 15.4 | 18.7 | 7/8" | 3/8" | 23.6 | 21.8 | 4.4 | 5.9 | 7.4 | 1.7 | | 040 | cm | 64.5 | 66.8 | 165.1 | 1" | 1" | 5.1 | 9.7 | 21.3 | 39.1 | 47.5 | 7/8" | 3/8" | 59.9 | 55.4 | 11.2 | 15.0 | 18.8 | 4.3 | | 0.40 | in | 25.4 | 26.3 | 30.6 | ן" | 1" | 2.0 | 3.8 | 8.4 | 15.4 | 18.7 | 7/8" | 1/2" | 23.6 | 21.8 | 4.4 | 5.9 | 7.4 | 1.7 | | 060 | cm | 64.5 | 66.8 | 165.1 | ון" | 1" | 5.1 | 9.7 | 21.3 | 39.1 | 47.5 | 7/8" | 1/2" | 59.9 | 55.4 | 11.2 | 15.0 | 18.8 | 4.3 | # Tranquility SP Dimensional Data | | | inet | Refrigerant Line Connections | | | | Electrical Knockouts | | | | | | | | |-----|----|------|------------------------------|------------|------|------|----------------------|--------------------|------|-----|-----------------|----------------|------|------| | | | | _ | C
Depth | D | E | 3
Liquid
Line | 4
Vapor
Line | F | G | Line
Voltage | Low
Voltage | Н | J | | 024 | in | 26.3 | 29.1 | 37.4 | 9.9 | 7.4 | 3/8" | 3/4" | 4.9 | 2.4 | 0.875 | 0.875 | 25.1 | 21.1 | | 024 | cm | 66.8 | 73.9 | 95.0 | 25.1 | 18.8 | 3/8" | 3/4" | 12.4 | 6.1 | 0.875 | 0.875 | 63.8 | 53.6 | | 036 | in | 26.3 | 29.1 | 37.4 | 9.9 | 7.4 | 3/8" | 7/8" | 4.9 | 2.4 | 0.875 | 0.875 | 25.1 | 21.1 | | 036 | cm | 66.8 | 73.9 | 95.0 | 25.1 | 18.8 | 3/8" | 7/8" | 12.4 | 6.1 | 0.875 | 0.875 | 63.8 | 53.6 | | 048 | in | 26.3 | 29.1 | 37.4 | 9.9 | 7.4 | 3/8" | 7/8" | 4.9 | 2.4 | 0.875 | 0.875 | 25.1 | 21.1 | | 048 | cm | 66.8 | 73.9 | 95.0 | 25.1 | 18.8 | 3/8" | 7/8" | 12.4 | 6.1 | 0.875 | 0.875 | 63.8 | 53.6 | | 0/0 | in | 26.3 | 29.1 | 37.4 | 9.9 | 7.4 | 1/2'' | 7/8" | 4.9 | 2.4 | 0.875 | 0.875 | 25.1 | 21.1 | | 060 | cm | 66.8 | 73.9 | 95.0 | 25.1 | 18.8 | 1/2'' | 7/8" | 12.4 | 6.1 | 0.875 | 0.875 | 63.8 | 53.6 | # Tranquility SK Dimensional Data | Model Size | 024 | 036 | 048 | 060 | | | |-----------------------------------|----------------|----------------|----------------|----------------|--|--| | Refrigerant Circuit | | | | | | | | Liquid I.D. (in.) | 3/8 | 3/8 | 3/8 | 3/8 | | | | Suction I.D. (in.) | 3/4 | 7/8 | 7/8 | 7/8 | | | | Refrigerant Leak Detection System | R ¹ | R ¹ | R ¹ | R ¹ | | | | Number of Sensors | 1 | 1 | 1 | 1 | | | | Cased Coil Dimensions | | | | | | | | A - Width - in. | 17 1/2 | 21 | 21 | 24 1/2 | | | | B - Coil Height (in.) | 14 1/2 | 25 7/8 | 25 7/8 | 30 | | | | C- Height (in.) | 20 | 28 | 28 | 32 | | | | Weight | | | | | | | | Coil Weight lbs. | 43 | 71 | 71 | 100 | | | | Shipping Weight lbs. | 48 | 78 | 78 | 110 | | | ^{1.} The RDS is factory installed on all Tranquility SK sizes. #### NOTES: - Flanges are provided for field installation - Casing top and bottom openings are the same direction ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service Department at 800-299-9747 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merelly ClimateMaster's opinion or commendation of its products. The latest version of this document is available at www.climatemaster.com. Engineered and assembled in the USA. © ClimateMaster, Inc. All Rights Reserved 2024 (4.6 cm) # Tranquility SA Dimensional Data | Cabinet
Size | | Ove | erall Cab | inet | Supply Ai | r Opening | Return Aiı | r Opening | | | | | |-----------------|-----|------------|-------------|------------|------------|------------|-------------|-------------|-----|-----|------|------| | | | A
Width | B
Height | C
Depth | D
Width | E
Depth | DD
Width | EE
Depth | F | G | Н | J | | SA024 | in. | 18.5 | 44.0 | 22.0 | 14.0 | 14.0 | 17.3 | 20.4 | 2.3 | 2.3 | 4.1 | 4.1 | | | cm. | 47.0 | 111.8 | 55.9 | 35.6 | 35.5 | 43.9 | 51.8 | 5.8 | 5.8 | 10.3 | 10.3 | | SA036 | in. | 22.0 | 55.0 | 22.0 | 18.0 | 18.0 | 20.8 | 20.4 | 2.1 | 2.1 | 2.1 | 2.1 | | SA048 | cm. | 55.9 | 139.7 | 55.9 | 45.7 | 45.7 | 52.8 | 51.8 | 5.2 | 5.2 | 5.2 | 5.2 | | SA060 | in. | 25.5 | 59.0 | 22.0 | 18.0 | 18.0 | 24.3 | 20.4 | 3.8 | 3.8 | 2.1 | 2.1 | | | cm. | 64.8 | 149.9 | 55.9 | 45.7 | 45.7 | 61.7 | 51.8 | 9.9 | 9.9 | 5.2 | 5.2 | ### **Minimum Installation Area** #### MINIMUM INSTALLATION AREA Minimum installation area for units that do not have a blower (e.g. w-w) where you do not need mechanical/natural ventilation. | Model | Charge | | Minimum I
Area f | nstallation
² [A _{min}] | | |-------|--------|-------|---------------------|---|-------------------------| | | (oz) | Floor | Window | Wall | Ceiling 54 87 96 | | SJ024 | 60 | 290 | 115 | 66 | 54 | | SJ036 | 96 | 743 | 231 | 105 | 87 | | SJ048 | 106 | 906 | 282 | 117 | 96 | | SJ060 | 136 | 1,492 | 464 | 153 | 123 | | A _{min} = | Minimum area where the unit is installed where ventilation is not required. | |-------------------------------|---| | | 0.0 ft (0.0 m) | | h_{inst} (window) = | 3.3 ft (1.0 m) | | h_{inst} (wall) = | 5.9 ft (1.8 m) | | h _{inst} (ceiling) = | 7.2 ft (2.2 m) | Minimum area where the unit can be installed if it has a blower so that you do not need mechanical/natural ventilation. | Model | Charge | Minimum Installation Area ft² [A _{min}] | | | | | | |----------|--------|---|--------|------|---------------|--|--| | | (oz) | Floor | Window | Wall | Ceiling
54 | | | | SA/SK024 | 60 | 206 | 115 | 66 | 54 | | | |
SA/SK036 | 96 | 330 | 184 | 106 | 87 | | | | SA/SK048 | 106 | 364 | 203 | 117 | 96 | | | | SA/SK060 | 136 | 467 | 261 | 150 | 123 | | | | A _{min} = | Minimum area where unit is installed when unit has incorporated airflow. | |-------------------------------|--| | | 0.0 ft (0.0 m) | | h_{inst} (window) = | | | | 5.9 ft (1.8 m) | | h _{inst} (ceiling) = | 7.2 ft (2.2 m) | Minimum CFM of unit that has a blower needed for mitigation mode. | Model | Charge (oz) | Minimum CFM [Q _{min}] | |----------|-------------|---------------------------------| | SA/SK024 | 60 | 101.5 | | SA/SK036 | 96 | 162.4 | | SA/SK048 | 106 | 179.3 | | SA/SK060 | 136 | 230.0 | | Q _{min} = | Minimum CFM provided by unit | |--------------------|------------------------------| | | | TA_{min} Q_{min} Minimum area and CFM requirements for the conditioned space (with a blower). | Model | Charge | Condition | oned Area | | | |----------|--------|-----------------------------------|----------------------------|--|--| | Model | (oz) | TA _{min} ft ² | Q _{min} (ft²/min) | | | | SA/SK024 | 60 | 101.5 | 3.07 | | | | SA/SK036 | 96 | 162.4 | 4.92 | | | | SA/SK048 | 106 | 179.3 | 5.43 | | | | SA/SK060 | 136 | 230.0 | 6.97 | | | | = | Minimum conditioned area for venting leaked refrigerant | |---|---| | | Minimum ventilation flow rate for | | = | conditioned space if space | | | is less than TA _{min} | Minimum area of opening for natural ventilation to the outdoors (with or without a blower). | Model | Charge (oz) | A _{nv}
in² | |----------------|-------------|------------------------| | SA/SK/SJ/SP024 | 60 | 104.0 | | SA/SK/SJ/SP036 | 96 | 131.6 | | SA/SK/SJ/SP048 | 106 | 138.3 | | SA/SK/SJ/SP060 | 136 | 156.6 | | | _ | Minimum natural ventilation area | |----|---|----------------------------------| | IV | | opening to the outdoors | #### Models: SJ/SP/SA/SK 024-060 ### **Minimum Installation Area** When the openings for connected rooms or natural ventilation are required, the following conditions shall be applied: - The area of any openings above 11.8 inches (300 mm) from the floor shall not be considered in determining compliance with Anv_{min}. - At least 50% of the required opening area Anv_{min} shall be below 7.8 inches (200 mm) from the floor. - The bottom of the lowest openings shall not be higher than the point of release when the unit is installed and not more than 3.9 inches (100 mm) from the floor. - Openings are permanent openings which cannot be closed. - For openings extending to the floor, the height shall not be less than 0.78 inch (20 mm) above the surface of the floor covering. - A second higher opening shall be provided. The total size of the second opening shall not be less than 50% of minimum opening area for Anv_{min} and shall be at least 3.3 ft (1.5 m) above the floor. ### **Accessories and Options** #### **ACCESSORIES AND OPTIONS** #### **Hot Water Generator** An optional insulated heat-reclaiming desuperheater coil of vented double-wall copper construction suitable for potable water shall be provided. The coil, hot-water circulating pump, and associated controls shall be factory mounted inside the unit cabinet. Sensors mounted on the compressor-discharge line and the potable water inlet shall transmit temperatures to the unit microprocessor where internal logic will determine when hot-water generation is feasible. The microprocessor shall cycle the pump periodically during unit operation to sample the DHW tank temperature. The microprocessor shall include multiple temperature set points to select from for hot water generation control. #### iGate 2 Smart Tank An optional 50, 85, or 105 gallon storage tank shall be provided for connection to the hot water generator (desuperheater) for storage of hot water generation. The tank shall feature a polyurethane shell, thick polyurethane foam insulation, polybutene tank, titanium electric backup elements in either 3,800W or 4,500W sizes, temperature sensors, front-mounted water connections, and the WXM communicating control board for seamless communication the DXM2.5 Advanced Communicating Controls. The addition of the iGate 2 Smart Tank requires an iGate 2 Communicating (AWC) Thermostat for hot water mode and temperature control. #### **Cupro-Nickel Heat Exchanger** An optional corrosion-resistant CuNi coaxial heat exchanger shall be factory installed in lieu of standard copper construction. #### Thermostat (field installed) An electronic communicating LCD thermostat shall be provided. The thermostat shall offer three stages of heating and two stages of cooling with precise temperature control and have a four-wire connection to the unit. The thermostat shall be capable of manual or automatic change-over operation and shall operate in standard or programmable mode. An integrated humidity-control feature shall be included to control a humidifier and/or a dehumidifier. The thermostat shall include a utility demand reduction feature to be initiated by an independent time program or an external input. The thermostat shall have a comprehensive installation setup menu to include configuration of the unit CFM for each mode of operation and configuration of the water flow rate through the unit, including variation of the water flow rate based on the stage of unit operation. The thermostat shall display system faults with probable cause and troubleshooting guidance. Comprehensive service diagnostics menus shall display, system inputs, system outputs, configuration settings, Geo-source inlet and outlet temperatures, compressor-discharge line temperature, liquid line temperature, leaving air temperature, and entering potable-water temperature (on units equipped with a Hot Water Generator). The thermostat shall allow for immediate manual control of all DXM2.5 outputs at the thermostat for rapid troubleshooting. #### **Auxiliary Heater (field installed)** An external, field-installed electric heater shall provide supplemental and/or emergency heating capability when used with the three-stage heating thermostat. #### WARRANTY INFORMATION ClimateMaster residential class heat pumps are backed by a ten-year limited warranty on all unit parts, including the following accessories when installed with ClimateMaster units: thermostats and electric heaters. Warranty Certificate RP851 for specific coverage and limitation. ClimateMaster goes even further to back up its commitment to quality by including a service labor allowance for the first five years on unit parts and thermostats, auxiliary electric heaters and geothermal pumping modules. The Optional Extended Factory Service Labor Allowance Warranty offers additional length of term protection to the consumer by offsetting service labor costs for 10 years. To order this warranty, contact your ClimateMaster distributor. This coverage must be purchased within 90 days of unit installation. See Limited Express Extended Labor Warranty Certificate RP852 for details. # **Revision History** | Date | Item | Action | |----------|------------------------------------|---| | | Features, Options, and Accessories | Added iGate 2 Smart Tank | | | iGate 2 Smart Tank | Added section | | | Electrical Data | Removed Max Fuse/HACR (calc) column from all tables | | | | Updated column headers to reflect standard and high head pump options | | 05/00/05 | | Updated the SJ with Standard Head Flow Controller table | | 05/02/25 | | Updated the SJ with High Head Flow Controller table | | | | Updated the SJ with High Head Flow Controller and HWG table | | | Physical Data | Added a note concerning the factory refrigerant charge | | | Accessories and Options | Added iGate 2 Smart Tank content | | | All | Reorganized the document's sections | | 01/13/25 | Minimum Installation Area | Updated minimum installation area | | 12/11/24 | Minimum Installation Area | Updated minimum installation area | | 11/26/24 | All | Created | R P 3 0 0 7 A NIBE GROUP MEMBER 7300 SW 44th St | Oklahoma City, OK 73179 Phone: 800.299.9747 www.climatemaster.com